K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2022

\(\sin\left(5x\right)+\sin\left(3x\right)+2\cos\left(x\right)=1+\sin\left(4x\right)\)

\(\Leftrightarrow2\sin\left(4x\right)\cos\left(x\right)-\sin\left(4x\right)+2\cos\left(x\right)-1=0\)

\(\Leftrightarrow\sin\left(4x\right)(2\cos\left(x\right)-1)+(2\cos\left(x\right)-1)=0\)

\(\Leftrightarrow(2\cos\left(x\right)-1)(\sin\left(4x\right)+1)=0\)

\(\Rightarrow\left[{}\begin{matrix}\cos\left(x\right)=\dfrac{1}{2}\\\sin\left(4x\right)=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k2\pi\\4x=\dfrac{-\pi}{2}+k2\pi\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k2\pi\\x=\dfrac{-\pi}{8}+k\dfrac{\pi}{2}\end{matrix}\right.\)

NV
21 tháng 8 2020

\(\Leftrightarrow sin4x\left(sin5x+sin3x\right)-sin2x.sinx=0\)

\(\Leftrightarrow2sin^24x.cosx-2sin^2x.cosx=0\)

\(\Leftrightarrow cosx\left(2sin^24x-2sin^2x\right)=0\)

\(\Leftrightarrow cosx\left(1-cos8x-1+cos2x\right)=0\)

\(\Leftrightarrow cosx\left(cos2x-cos8x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos8x=cos2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\8x=2x+k2\pi\\8x=-2x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{k\pi}{3}\\x=\frac{k\pi}{5}\end{matrix}\right.\)

1 tháng 3



\(sin ⁡ 5 x - sin ⁡ 4 x + sin ⁡ 3 x \left(\right. 1 \left.\right)\)

\(\Leftrightarrow \left(\right. sin ⁡ 3 x + sin ⁡ 5 x \left.\right) - sin ⁡ 4 x = 0\)

\(\Leftrightarrow 2 sin ⁡ 4 x . cos ⁡ x - sin ⁡ 4 x = 0\)

\(\Leftrightarrow sin ⁡ 4 x \left(\right. 2 cos ⁡ x - 1 \left.\right) = 0\)

\(\Leftrightarrow \left[\right. sin ⁡ 4 x = 0 \\ 2 cos ⁡ x - 1 = 0 \Leftrightarrow \left[\right. x = \frac{k \pi}{4} \\ x = \frac{\pi}{3} + k 2 \pi \\ x = - \frac{\pi}{3} + k 2 \pi\)\(\left(\right. k \in \mathbb{Z} \left.\right)\)

Vậy các nghiệm của phương trình là \(x = \frac{k \pi}{4}\)\(x = \frac{\pi}{3} + k 2 \pi\) và  \(x = - \frac{\pi}{3} + k 2 \pi\) \(\left(\right. k \in \mathbb{Z} \left.\right)\).

20 tháng 12 2021
20 tháng 12 2021
17 tháng 5 2017

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

a: \(\Leftrightarrow2\cdot\sin3x\cdot\cos x-2\cos^2x=0\)

\(\Leftrightarrow\cos x\left(\sin3x-\cos x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{2}+k\Pi\\\sin3x=\cos x=\sin\left(\dfrac{\Pi}{2}-x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{2}+k\Pi\\3x=\dfrac{\Pi}{2}-x+k2\Pi\\3x=\dfrac{\Pi}{2}+x+k2\Pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{2}+k\Pi\\x=\dfrac{\Pi}{8}+\dfrac{k\Pi}{2}\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)

b: \(\Leftrightarrow\sin x+\sin5x+\sin^2x=0\)

\(\Leftrightarrow\sin x=0\)

hay \(x=k\Pi\)

4 tháng 9 2018

sin3x + 1=2sin22x

<=> sin3x + 1 = 2\(\dfrac{1-cos4x}{2}\)

<=> sin3x + 1 = 1 - cos4x

<=> sin3x = -cos4x

<=> sin3x + cos4x = 0

<=> \(\dfrac{\sqrt{2}}{2}\)sin3x + \(\dfrac{\sqrt{2}}{2}\)cos4x = 0 (chia 2 vế cho \(\sqrt{2}\)).

<=> cos\(\dfrac{\pi}{4}\)sin3x + sin\(\dfrac{\pi}{4}\)cos4x = 0

<=> sin (3x+\(\dfrac{\pi}{4}\)) = 0

<=> sin(3x+\(\dfrac{\pi}{4}\)) = sin0

<=> \(\left[{}\begin{matrix}3x+\dfrac{\pi}{4}=0+k2\pi\\3x+\dfrac{\pi}{4}=\pi-0+k2\pi\end{matrix}\right.\)(k\(\in\)Z)

<=>\(\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+\dfrac{k2\pi}{3}\\x=\dfrac{5\pi}{12}+\dfrac{k2\pi}{3}\end{matrix}\right.\)(k\(\in\)Z)