\(S=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 10 2024

Lời giải:

$\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+....+\frac{1}{99}$

$=1+(\frac{98}{2}+1)+(\frac{97}{3}+1)+.....+(\frac{1}{99}+1)$

$=1+\frac{100}{2}+\frac{100}{3}+....+\frac{100}{99}$

$=\frac{100}{2}+\frac{100}{3}+....+\frac{100}{99}+\frac{100}{100}$

$=100(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{99}+\frac{1}{100})$

Suy ra: 

\(S=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}}{100(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100})}=\frac{1}{100}\)

27 tháng 6 2018

Đặt \(A=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}\)

\(A=\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{97}+1\right)+...+\left(\frac{98}{2}+1\right)+1\) ( 99/1 = 99, tất cả 98 ( không tính 99/1) hạng tử trong A đều cộng với 1 , dư ra 1 chỗ cuối)

\(A=\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}+\frac{100}{100}\) ( 100/100=1)

\(A=100.\left(\frac{1}{2}+...+\frac{1}{97}+\frac{1}{98}+\frac{1}{99}+\frac{1}{100}\right)\)

Thay A vào E, có:

\(E=\frac{100.\left(\frac{1}{2}+...+\frac{1}{97}+\frac{1}{98}+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

\(E=100\)

27 tháng 6 2018

\(\Rightarrow E=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+....+\frac{98}{2}+1+1+...+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)     ( Có 99 số 1)

\(\Rightarrow\frac{\frac{1}{99}+1+\frac{2}{98}+\frac{3}{97}+1+...+\frac{98}{2}+1+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)(Nhóm 98 số 1 với 98 phân số đầu ở trên tử)mik viết thiếu nha sorry *-*

\(\Rightarrow E=\frac{\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}+\frac{100}{100}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

\(\Rightarrow E=\frac{\frac{100}{2}+\frac{100}{3}+\frac{100}{4}+...+\frac{100}{99}+\frac{100}{100}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

\(\Rightarrow E=\frac{100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

\(\Rightarrow E=\frac{100.1}{1}=100\)

~Chúc bạn hok tốt~

7 tháng 6 2019

\(B=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}\)

\(B=\left(1+\frac{1}{99}\right)+\left(1+\frac{2}{98}\right)+...+\left(1+\frac{98}{2}\right)+1\)

\(B=\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}+\frac{100}{100}\)

\(B=100\left(\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}+\frac{1}{100}\right)\)

Ta có: \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)}=\frac{1}{100}\)

Vậy...

P/s: Hoq chắc

7 tháng 6 2019

#)Giải :

\(B=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}\)

\(B=1+\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{97}+1\right)+...+\left(\frac{98}{2}+1\right)\)

\(B=\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}\)

\(B=100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)}=100\)

15 tháng 4 2019

Đặt \(B=\frac{C}{D}\)

Biến đổi D : \(D=\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}\)

                         \(=\left(99+1\right)+\left(\frac{98}{2}+1\right)+...+\left(\frac{1}{99}+1\right)-99\)

                          \(=100+\frac{100}{2}+...+\frac{100}{99}+\frac{100}{100}-100\)

                           \(=100.\left(\frac{1}{2}+...+\frac{1}{100}\right)\)

\(\Rightarrow B=\frac{\frac{1}{2}+...+\frac{1}{100}}{100.\left(\frac{1}{2}+...+\frac{1}{100}\right)}=\frac{1}{100}\)

12 tháng 3 2019

mình chỉ nói cách làm thôi đc k? phân tích 99/1 ra thành 99 số 1 sau đó lấy mõi số 1 đó cộng với 1 phân số thì tất cả đều có tử số là 100. đặt 100 ra ngoài nhân với 1/2,1/3,.... sau đó ta thấy phần trong ngoặc bằng mẫu số thì suy ra A=100

12 tháng 3 2019

cảm ơn bn ạ

26 tháng 3 2015

Phân tích mẫu ta có

99/1 + 98/2 +...+1/99 = (98/2 + 1) + (97/3 + 1) +...+(1/99 + 1) +99/1 - 99

( cộng 1 vào mỗi phân số trừ 99/1   do đó phải trừ đi 99 để vẵn được đẳng thức đó)

= 100/2 +100/3 +...+100/99 = 100. (1/2 +1/3 +...+1/99)

Do đó B = [100. (1/2 +1/3 +...+1/99)]/(1/2 +1/3 +..1/99) =100

27 tháng 3 2015

Phân tích mẫu ta có

99/1 + 98/2 +...+1/99 = (98/2 + 1) + (97/3 + 1) +...+(1/99 + 1) +99/1 - 99

( cộng 1 vào mỗi phân số trừ 99/1   do đó phải trừ đi 99 để vẵn được đẳng thức đó)

= 100/2 +100/3 +...+100/99 = 100. (1/2 +1/3 +...+1/99)

Do đó B = [100. (1/2 +1/3 +...+1/99)]/(1/2 +1/3 +..1/99) =100

8 tháng 5 2018

co ai biet cha noi cau hoi nay ko

8 tháng 5 2018

Mình biết trả lời câu này nhưng mình đang rất bận ! Có gì vào nhắn tin cho mình tối mình giải cho !

12 tháng 3 2018

Gợi ý : 

a ) Tách số 19 ra 19 số 1 

Nhóm ở trên tử , mỗi số hạng cộng với 1 

=> ...

b )  Tách số 99 ở mẫu thành 99 số 1 

Nhóm ở dưới mẫu , mỗi số hạng cộng với 1 

=> ...

Chúc học tốt !!! 

20 tháng 4 2017

Đặt mẫu là A :
=> A = \(\frac{1}{99}\)+  \(\frac{2}{98}\)+  \(\frac{3}{97}\)+...+  \(\frac{98}{2}\)+  \(\frac{99}{1}\)
= ( \(\frac{1}{99}\)+ 1 ) + ( \(\frac{2}{98}\)+ 1 ) + ( \(\frac{3}{97}\)+ 1 ) +...+  ( \(\frac{98}{2}\)+ 1 ) + ( \(\frac{99}{1}\)+1 ) - 99 ( Vì ta đã cộng với 99 số 1 rồi nên phải trừ 99 )
=  \(\frac{100}{99}\)+  \(\frac{100}{98}\)+  \(\frac{100}{97}\)+...+  \(\frac{100}{2}\)+  \(\frac{100}{1}\)- 99
=  \(\frac{100}{99}\)+  \(\frac{100}{98}\)+  \(\frac{100}{97}\)+...+  \(\frac{100}{2}\)+ ( \(\frac{100}{1}\)- 99 )
=  \(\frac{100}{99}\)+  \(\frac{100}{98}\)+  \(\frac{100}{97}\)+...+  \(\frac{100}{2}\)+  \(\frac{100}{100}\)
= 100.( \(\frac{1}{2}\)+  \(\frac{1}{3}\)+  \(\frac{1}{4}\)+...+  \(\frac{1}{100}\))
=> Tử trên mẫu là : 
    \(\frac{1}{2}\)+  \(\frac{1}{3}\)+  \(\frac{1}{4}\)+...+ \(\frac{1}{100}\)
_______________________________________
 
100.(\(\frac{1}{2}\)+  \(\frac{1}{3}\)+  \(\frac{1}{4}\)+...+  \(\frac{1}{100}\))
=\(\frac{1}{100}\)