Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3}{2}\times\left(\frac{1}{13\times11}+\frac{1}{13\times15}+\frac{1}{15\times17}+.....+\frac{1}{97\times99}\right)\)
\(A=\frac{3}{2}\times\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+......+\frac{1}{97}-\frac{1}{99}\right)\)
\(A=\frac{3}{2}\times\left(\frac{1}{11}-\frac{1}{99}\right)\)
\(A=\frac{3}{2}\times\frac{8}{99}\)
\(A=\frac{4}{33}\)
b] \(\frac{A}{5}=\frac{4}{31.35}+\frac{6}{35.41}+\frac{9}{41.50}+\frac{7}{50.57}\)
\(\frac{A}{5}=\frac{1}{31}-\frac{1}{35}+\frac{1}{35}-\frac{1}{41}+\frac{1}{41}-\frac{1}{50}+\frac{1}{50}-\frac{1}{57}\)
\(\frac{A}{5}=\frac{1}{31}-\frac{1}{57}\)
\(\Rightarrow A=5\left(\frac{1}{31}-\frac{1}{57}\right)=\frac{130}{1767}\)
c] Ta đặt \(\left(8n+5,6n+4\right)=d\)
\(\Rightarrow\frac{8n+5\div d}{6n+4\div d}\Rightarrow4\times\left(6n+4\right)-3\times\left(8n+5\right)=\left(24n+16\right)-\left(24n+15\right):d\)\(\Rightarrow d=1\)
Vậy \(\frac{8n+5}{6n+4}\)là phân số tối giản
a) -2 /3 x + 1/5 = 3/10
-2/3x =1/10
x = -3/20
vậy x = -3/20
b) 25/9 - 12/13x = 7/
12/13x = 2
x = 13/6
c) (x) - 3/4 =5/3
(x) = 29/12
x = 29/12 ; -29/-12
d) x = 11/2
\(S=\frac{2016}{2.3:2}+\frac{2016}{3.4:2}+...+\frac{2016}{2015.2016:2}\)
\(S=\frac{4032}{2.3}+\frac{4032}{3.4}+...+\frac{4032}{2015.2016}\)
\(S=4032\left[\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\right]\)
\(S=4032\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right]\)
\(S=4032\left[\frac{1}{2}-\frac{1}{2016}\right]=4032\cdot\frac{1007}{2016}\)
\(S=2014\)
S = \(2016+\frac{2016}{1+2}+\frac{2016}{1+2+3+}+...+\frac{2016}{1+2+3+...+2015}\)
S = \(2016+\left(\frac{2016}{1+2}+\frac{2016}{1+2+3}+...+\frac{2016}{1+2+3+...+2015}\right)\)
S = \(2016+2016.\left(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2015}\right)\)
đặt A = \(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2015}\)
A = \(\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+...+\frac{1}{\left(1+2015\right).2015:2}\)
A = \(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2015.2016}\)
A = \(2.\left(\frac{1}{2}-\frac{1}{3}\right)+2.\left(\frac{1}{3}-\frac{1}{4}\right)+...+2.\left(\frac{1}{2015}-\frac{1}{2016}\right)\)
A = \(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)
A = \(2.\left(\frac{1}{2}-\frac{1}{2016}\right)\)
A = \(2.\frac{1007}{2016}=\frac{1007}{1008}\)
Thay A vào ta được :
S = \(2016+2016.\frac{1007}{1008}\)
S = \(2016.\left(1+\frac{1007}{1008}\right)\)
S = \(2016.\frac{2015}{1008}\)
S = \(4030\)
Bài 5 :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{59}\)
\(A=1-\frac{1}{50}\)
từ trên ta có : \(1-\frac{1}{50}< 1\)
\(\Rightarrow A< 1\)
Bài 1 mk ko hiểu đề cho lắm
Bài 2 :
Đặt \(A=\frac{x+4}{x-2}+\frac{2x-5}{x-2}\)
Ta có :
\(\frac{x+4}{x-2}+\frac{2x-5}{x-2}=\frac{x+4+2x-5}{x-2}=\frac{3x-1}{x-2}=\frac{3x-6+5}{x-2}=\frac{3\left(x-2\right)}{x-2}+\frac{5}{x-2}=3+\frac{5}{x-2}\)
Để \(A\) là số nguyên thì \(\frac{5}{x-2}\) phải là số nguyên \(\Rightarrow\) \(5⋮\left(x-2\right)\) \(\Rightarrow\) \(\left(x-2\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
Do đó :
\(x-2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(x\) | \(3\) | \(1\) | \(7\) | \(-3\) |
Vậy \(x\in\left\{-3;1;3;7\right\}\) thì A là số nguyên
Chúc bạn học tốt ~
\(\frac{2017}{1.2.3}+\frac{2017}{2.3.4}+\frac{2017}{3.4.5}+...+\frac{2017}{19.20.21}\)
\(=2017\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{19.20.21}\right)\)
\(=2017.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{19.20.21}\right)\)
\(=2017.\left(1-\frac{1}{2}-\frac{1}{3}-\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)-...-\left(\frac{1}{19}-\frac{1}{20}-\frac{1}{21}\right)\right)\)
\(=2017.\left(1+\frac{1}{21}\right)\)phá ngoặc trước dấu trừ đổi dấu,rút gọn:
\(=2017.\frac{20}{21}=\frac{40340}{21}\)
Bài này có 2 cách, nhưng cách nào thì cách cx phải dùng tới máy tính, ai cs cách hay show hộ kham khảo !
Cách 1 : cầm máy tính lên bấm
Cách 2 : \(C=\frac{3}{10}+\frac{3}{40}+\frac{3}{88}+\frac{1}{340}\)
\(C=3\left(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}\right)+\frac{1}{340}\)
\(C=3.\frac{3}{22}+\frac{1}{340}=\frac{9}{22}+\frac{1}{340}=\frac{1541}{3740}\)
S = 1/2-1/5+1/5-1/8+1/8-...-1/20
S = 1/2-1/20
S = 9/20 nha
\(S=\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{17.20}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-...-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)