Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lời giải của mình nhé:
Giải:
\(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{93.95}\\ =\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{93}-\frac{1}{95}\\ \frac{1}{5}-\frac{1}{95}\\ =\frac{19-1}{95}=\frac{18}{95}\)
Chúc bạn học tốt!
Ta thấy: \(\frac{2}{5.7}=\frac{1}{5}-\frac{1}{7};\frac{2}{7.9}=\frac{1}{7}-\frac{1}{9};.....;\frac{2}{93.95}=\frac{1}{93}-\frac{1}{95}\)
\(S=\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{93.95}\)
\(S=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-.....-\frac{1}{95}\)
\(S=\frac{1}{5}-\frac{1}{95}=\frac{18}{95}\)
\(\frac{3x-11}{2}-\frac{x-3}{3}=\frac{1}{6}\)
\(\frac{3\times\left(3x-11\right)}{3\times2}-\frac{2\times\left(x-3\right)}{2\times3}=\frac{1}{6}\)
\(\frac{9x-33}{6}-\frac{2x-6}{6}=\frac{1}{6}\)
\(\frac{\left(9x-33\right)-\left(2x-6\right)}{6}=\frac{1}{6}\)
\(9x-33-2x+6=1\)
\(\left(9x-2x\right)-\left(33-6\right)=1\)
\(7x-27=1\)
\(7x=1+27\)
\(7x=28\)
\(x=\frac{28}{7}\)
\(x=4\)
Chúc bạn học tốt
\(PT\Leftrightarrow\frac{3.\left(3x-11\right)-2.\left(x-3\right)}{6}=\frac{1}{6}\)
<=> 3.(3x - 11) - 2.(x - 3) = 1
<=> 9x - 33 - 2x + 6 = 1
<=> 7x = 28
<=> x = 4
\(\frac{1}{6}.\frac{2}{5}.\frac{25}{7}=\frac{1.2.25}{6.5.7}=\frac{1.2.5.5}{2.3.5.7}=\frac{5}{21}\)
\(H=\left(9\frac{3}{8}+7\frac{3}{8}\right)+4,03=16\frac{3}{8}+4,03=16,375+4,03=20,405\)
\(I=10101.\left(\frac{5}{111111}+\frac{2,5}{111111}-\frac{4}{111111}\right)=10101.\frac{3,5}{111111}=\frac{7}{22}\)
\(\frac{2x+1}{3}=\frac{5}{2}\)
\(2x+1=\frac{5.3}{2}=\frac{15}{2}\)
2x= 15/2 - 1 = 13/2
x = 13/2 : 2
x = 13/4
b) 2x + 2x+1 + 2x+2 + 2x+3 = 480
2x.(1+ 2 +22 + 23) = 480
2x . 15 = 480
2x = 480 : 15 = 32
2x = 25 => x = 5
c) \(\left(\frac{3x}{7}+1\right):\left(-4\right)=-\frac{1}{28}\)
\(\frac{3x}{7}+1=\frac{-1}{28}.\left(-4\right)=\frac{1}{7}\)
\(\frac{3x}{7}=\frac{1}{7}-1=-\frac{6}{7}\)
< = > 3x= -6 => x = -2
\(3^{x-1}=\frac{1}{243}\)
\(\Rightarrow3^x=243\)
\(\Rightarrow3^x=3^5\)
\(\Rightarrow x=5\)
Ta có :
\(B=\frac{5}{2\cdot1}+\frac{4}{1\cdot11}+\frac{3}{11\cdot2}+\frac{1}{2\cdot15}+\frac{13}{15\cdot4}\)
\(=>\frac{B}{7}=\frac{5}{2\cdot7}+\frac{4}{7\cdot11}+\frac{3}{11\cdot14}+\frac{1}{14\cdot15}+\frac{13}{15\cdot28}\)
\(=>\frac{B}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)
\(=>\frac{B}{7}=\frac{1}{2}-\frac{1}{28}=\frac{14}{28}-\frac{1}{28}=\frac{13}{28}\)
\(=>B=\frac{13}{28}\cdot7=\frac{13}{4}\)
\(S=\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{93.95}\)
\(S=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{93}-\frac{1}{95}\)
\(S=\frac{1}{5}-\frac{1}{95}\)
\(S=\frac{18}{95}\)
Vậy \(S=\frac{18}{95}\)
Giải
\(S=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{93}-\frac{1}{95}\)
\(=\frac{1}{5}-\frac{1}{95}\)
\(=\frac{18}{95}\)
Vậy S=\(\frac{18}{95}\)