\(\frac{1}{5.6}\)+\(\frac{1}{10.9}\)+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2015

S=1/5.6+1/10.9+1/15.12+...+1/3350.2013

 =(1/5).(1/3).(1/1.2+1/2.3+1/3.4+...+1/670.671)

 =(1/15). (1-1/2+1/2-1/3+...+1/670-1/671)

 =(1/15). (1-1/671)

 =1/15.670/671

 =134/2013

 

5 tháng 5 2023
1/5.6+ 1/10.9              
                 
                 
                 
                 
                 

 

1 tháng 4 2016

s=\(\frac{1}{5.3.2}\) +\(\frac{1}{5.3.2.3}\) +.............+\(\frac{1}{5.3.670.671}\) 

s=1/15(1/1.2+1/2.3+..................+1/670.671)

s=1/15(1-1/2+1/2-1/3+.............+1/670-1/671)

s=1/15(1-1/671)

s=1/15.670/671

s=134/2013

29 tháng 5 2020

1) \(\frac{1}{5}-\frac{1}{6}=\frac{6-5}{5.6}=\frac{1}{5.6}\)

\(\frac{1}{6}-\frac{1}{7}=\frac{7-6}{6.7}=\frac{1}{6.7}\)

2) Áp dụng bài trên, ta có:

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)

= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

= \(1-\frac{1}{6}=\frac{5}{6}\)

4 tháng 5 2018

\(A=\frac{1}{2.2}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)

\(A=\frac{1}{4}+\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)\)

\(A=\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)

                          ( gạch bỏ các phân số giống nhau)

\(A=\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{9}\right)\)

\(A=\frac{1}{4}+\frac{2}{9}\)

\(A=\frac{17}{36}\)

phần b, c bn lm tương tự như phần a nha

23 tháng 4 2017

S=\(\frac{1}{3}.\left(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{4950}\right)\)

S=\(\frac{1}{3}.2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\right)\)

S=\(\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

S=\(\frac{2}{3}.\left(1-\frac{1}{100}\right)=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)

23 tháng 4 2017

\(\frac{33}{50}>\frac{30}{50}=\frac{3}{5}->S>\frac{3}{5}\)

4 tháng 5 2016

 nhung ma ko cothoi gian giai

4 tháng 5 2016

\(S1=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)

\(S1=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{101}=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)

\(S2=\frac{5}{1.3}+\frac{5}{3.5}+....+\frac{5}{99.101}\)

\(S2=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-.....-\frac{1}{101}\right)=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{250}{101}\)

12 tháng 7 2020

Bạn tham khảo Câu hỏi của Đoàn Phạm Hùng