\(S=\dfrac{1}{5^2}+\dfrac{1}{5^4}+...+\dfrac{1}{5^{2022}}.CMR:S< \dfrac{1}{24}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(S=\dfrac{1}{5^2}+\dfrac{1}{5^4}+...+\dfrac{1}{5^{2022}}\)

=>\(25\cdot S=1+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2020}}\)

=>\(25S-S=1+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2020}}-\dfrac{1}{5^2}-\dfrac{1}{5^4}-...-\dfrac{1}{5^{2022}}\)

=>\(24S=1-\dfrac{1}{5^{2022}}\)

=>\(S=\dfrac{1}{24}-\dfrac{1}{24\cdot5^{2022}}< \dfrac{1}{24}\)

19 tháng 1 2018

\(S=\dfrac{1}{5^2}+\dfrac{1}{5^4}+\dfrac{1}{5^6}+...+\dfrac{1}{5^{2018}}\\ 25S=25\left(\dfrac{1}{5^2}+\dfrac{1}{5^4}+\dfrac{1}{5^6}+...+\dfrac{1}{5^{2018}}\right)\\ 25S=1+\dfrac{1}{5^2}+\dfrac{1}{5^4}+...+\dfrac{1}{5^{2016}}\\ 25S-S=\left(1+\dfrac{1}{5^2}+\dfrac{1}{5^4}+...+\dfrac{1}{5^{2016}}\right)-\left(\dfrac{1}{5^2}+\dfrac{1}{5^4}+\dfrac{1}{5^6}+...+\dfrac{1}{5^{2018}}\right)\\ 24S=1-\dfrac{1}{5^{2018}}< 1\\ \Rightarrow S< \dfrac{1}{24}\)

a: 2x(x-1/7)=0

=>x(x-1/7)=0

=>x=0 hoặc x=1/7

b: \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)

\(\Leftrightarrow\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}=\dfrac{8}{20}-\dfrac{15}{20}=\dfrac{-7}{20}\)

nên \(x=\dfrac{-1}{4}:\dfrac{7}{20}=\dfrac{-20}{4\cdot7}=\dfrac{-5}{7}\)

c: \(\Leftrightarrow\dfrac{41}{9}:\dfrac{41}{18}-7< x< \left(3.2:3.2+\dfrac{45}{10}\cdot\dfrac{31}{45}\right):\left(-21.5\right)\)

\(\Leftrightarrow2-7< x< \dfrac{\left(1+3.1\right)}{-21.5}\)

\(\Leftrightarrow-5< x< \dfrac{-41}{215}\)

mà x là số nguyên

nên \(x\in\left\{-4;-3;-2;-1\right\}\)

Y
9 tháng 2 2019

+ \(5N=1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{98}}\)

\(N=\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{98}}+\dfrac{1}{5^{99}}\)

\(\Rightarrow4N=5N-N=1-\dfrac{1}{5^{99}}\)

\(\Rightarrow N=\dfrac{1}{4}-\dfrac{1}{4\cdot5^{99}}< \dfrac{1}{4}\) ( đpcm )

21 tháng 10 2017

a. \(\dfrac{11}{24}-\dfrac{5}{41}+\dfrac{13}{24}+0,5-\dfrac{36}{41}\)

\(=\left(\dfrac{11}{24}+\dfrac{13}{24}\right)+\left(\dfrac{-5}{41}-\dfrac{36}{41}\right)+0,5\)

\(=1+\left(-1\right)+0,5\)

\(=0,5\)

b. \(-12:\left(\dfrac{3}{4}-\dfrac{5}{6}\right)^2\)

\(=-12:\left(\dfrac{-1}{12}\right)^2\)

\(=-12:\dfrac{1}{144}\)

\(=-1728\)

c. \(\dfrac{7}{23}.\left[\left(-\dfrac{8}{6}\right)-\dfrac{45}{18}\right]\)

\(=\dfrac{7}{23}.\dfrac{-23}{6}\)

\(=\dfrac{-7}{6}\)

d. \(23\dfrac{1}{4}.\dfrac{7}{5}-13\dfrac{1}{4}:\dfrac{5}{7}\)

\(=23\dfrac{1}{4}.\dfrac{7}{5}-13\dfrac{1}{4}.\dfrac{7}{5}\)

\(=\left(23\dfrac{1}{4}-13\dfrac{1}{4}\right).\dfrac{7}{5}\)

\(=10.\dfrac{7}{5}\)

\(=14\)

e. \(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right).\left(0,8-\dfrac{3}{4}\right)^2\)

\(=\dfrac{17}{12}.\left(\dfrac{1}{20}\right)^2\)

\(=\dfrac{17}{12}.\dfrac{1}{400}=\dfrac{17}{4800}\)

9 tháng 8 2017

2.

\(A=\dfrac{36}{1\cdot3\cdot5}+\dfrac{36}{3\cdot5\cdot7}+...+\dfrac{36}{25\cdot27\cdot29}\\ =9\cdot\left(\dfrac{4}{1\cdot3\cdot5}+\dfrac{4}{3\cdot5\cdot7}+...+\dfrac{4}{25\cdot27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{1\cdot3}-\dfrac{1}{3\cdot5}+\dfrac{1}{3\cdot5}-\dfrac{1}{5\cdot7}+...+\dfrac{1}{25\cdot27}-\dfrac{1}{27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{1\cdot3}-\dfrac{1}{27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{3}-\dfrac{1}{783}\right)\\ =9\cdot\dfrac{1}{3}-9\cdot\dfrac{1}{783}\\ =3-\dfrac{1}{87}< 3\)

Vậy \(A< 3\)

b,

\(B=\dfrac{1}{1^2}+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\\ B=1+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\\ B< 1+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\\ B< 1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ B< 1+\dfrac{1}{1}-\dfrac{1}{50}\\ B< 2-\dfrac{1}{50}< 2\)

Vậy \(B< 2\)

10 tháng 8 2017

\(P=\dfrac{2}{60\cdot63}+\dfrac{2}{63\cdot66}+...+\dfrac{2}{117\cdot120}+\dfrac{2}{2011}\\ =\dfrac{2}{3}\cdot\left(\dfrac{3}{60\cdot63}+\dfrac{3}{63\cdot66}+...+\dfrac{3}{117\cdot120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{60}-\dfrac{1}{63}+\dfrac{1}{63}-\dfrac{1}{66}+...+\dfrac{1}{117}-\dfrac{1}{120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{60}-\dfrac{1}{120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{2}+\dfrac{3}{2011}\right)\)

\(Q=\dfrac{5}{40\cdot44}+\dfrac{5}{44\cdot48}+...+\dfrac{5}{76\cdot80}+\dfrac{5}{2011}\\ =\dfrac{5}{4}\cdot\left(\dfrac{4}{40\cdot44}+\dfrac{4}{44\cdot48}+...+\dfrac{4}{76\cdot80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{40}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{48}+...+\dfrac{1}{76}-\dfrac{1}{80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{40}-\dfrac{1}{80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{2}+\dfrac{4}{2011}\right)\)

\(\dfrac{3}{2011}< \dfrac{4}{2011}\Rightarrow\dfrac{1}{2}+\dfrac{3}{2011}< \dfrac{1}{2}+\dfrac{4}{2011}\left(1\right)\)

\(\dfrac{2}{3}< \dfrac{5}{4}\left(2\right)\)

Từ (1) và (2) ta có: \(\dfrac{2}{3}\left(\dfrac{1}{2}+\dfrac{3}{2011}\right)< \dfrac{5}{4}\left(\dfrac{1}{2}+\dfrac{4}{2011}\right)\Leftrightarrow P< Q\)

Vậy P < Q

a: \(\Leftrightarrow-\dfrac{23}{5}\cdot\dfrac{50}{23}< x< \dfrac{-13}{5}:\dfrac{21}{15}=\dfrac{-13}{5}\cdot\dfrac{5}{7}=\dfrac{-13}{7}\)

=>-10<x<-13/7

hay \(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2\right\}\)

b: \(\Leftrightarrow-\dfrac{13}{3}\cdot\dfrac{1}{3}< x< \dfrac{-2}{3}\cdot\dfrac{4-3-9}{12}\)

\(\Leftrightarrow-\dfrac{13}{9}< x< \dfrac{4}{9}\)

mà x là số nguyên

nên \(x\in\left\{-1;0\right\}\)

30 tháng 11 2017

Các bạn trả lời giúp mk nha. Mk đang cần gấp. Chều nay mk kiểm tra rồi

30 tháng 11 2017

0 cần trả lời hết cũng đc