\(\dfrac{1+3+3^2+3^3+...+3^{2000}}{1-3^{2001}}\)

Giúp mình với

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(B=1+3+3^2+...+3^{2000}\)

=>\(3B=3+3^2+3^3+...+3^{2001}\)

=>\(3B-B=3+3^2+...+3^{2001}-1-3-3^2-...-3^{2000}\)

=>\(2B=3^{2001}-1\)

=>\(B=\dfrac{3^{2001}-1}{2}\)

\(S=\dfrac{B}{1-3^{2001}}=\dfrac{-\dfrac{1-3^{2001}}{2}}{1-3^{2001}}=-\dfrac{1}{2}\)

8 tháng 5 2024

Gọi 1 + 3 + 32 + 33 + ... + 32000 là: A

3A = 3 + 32 + 33 + 34 + ... + 32001

(3 - 1)A = 32001 - 1

2A = 32001 - 1

A = \(\dfrac{3^{2001}-1}{2}\)

\(S=\dfrac{\dfrac{3^{2001}-1}{2}}{1-3^{2001}}=\dfrac{3^{2001}-1}{2-3^{2001}\times2}\)

 

18 tháng 4 2019

Đặt A=1+3+32+....+32000

=> 3A=3+32+33+.....+32001

=> 3A-A=2A=32001-1

=> A=(32001-1)/2

=> S=(32001-1)/2(1-32001)

=> S=-1/2

Đúng thì tk cho mình nha. 

Đặt \(A=1+3+3^2+3^3+...+3^{2000}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{2001}\)

\(\Rightarrow3A-A=3^{2001}-1\)

\(\Rightarrow2A=3^{2001}-1\)

\(\Rightarrow A=\frac{3^{2001}-1}{2}\)

Vậy \(S=\frac{\frac{3^{2001}-1}{2}}{1-3^{2001}}\)\(=\frac{3^{2001}-1}{2}\cdot\frac{1}{1-3^{2001}}=\frac{3^{2001}-1}{2\cdot\left(1-3^{2001}\right)}=-\frac{1}{2}\)

18 tháng 6 2019

Bài 2 

\(a,\)\(\left(x^2+7\right)\left(x^2-49\right)< 0\)

Vì \(x^2+7>0\)\(\Rightarrow x^2-49< 0\)

\(\Rightarrow\left(x-7\right)\left(x+7\right)< 0\)

\(...\)

18 tháng 6 2019

Bài 2:

a) \(\left(x^2+7\right).\left(x^2-49\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x^2+7< 0\\x^2-49>0\end{cases}}\)hoặc \(\hept{\begin{cases}x^2+7>0\\x^2-49< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2< -7\\x^2>49\end{cases}\left(loai\right)}\)hoặc \(\hept{\begin{cases}x^2>-7\\x^2< 49\end{cases}}\)

\(\Leftrightarrow-7< x^2< 49\)

Mà \(x^2\ge0\)và  \(x^2\)là 1 SCP

\(\Rightarrow x^2\in\left\{1;4;9;16;25;36\right\}\)

\(\Rightarrow x\in\left\{1;2;3;4;5;6\right\}\)

Vậy \(x\in\left\{1;2;3;4;5;6\right\}\)

21 tháng 3 2017

a)\(\frac{5}{2}-3\left(\frac{1}{3}-x\right)=\frac{1}{4}-7x\)

\(\Leftrightarrow\frac{5}{2}-1+x=\frac{1}{4}-7x\)

\(\Leftrightarrow8x=-\frac{5}{4}\)

\(\Leftrightarrow x=-\frac{5}{32}\)

c)\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)

\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)

\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2003}\)

\(\Leftrightarrow x+1=2003\)

\(\Leftrightarrow x=2002\)

7 tháng 3 2019

\(S=1+\frac{1}{1!}+\frac{1}{2!}+......+\frac{1}{2001!}=1+1+\frac{1}{2!}+\frac{1}{3!}+....+\frac{1}{2001!}< 1+1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2000.2001}=2+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....-\frac{1}{2001}< 2+1=3\Rightarrow S< 3\text{(đpcm)}\)

7 tháng 3 2019

Ta có

\(\dfrac{1}{2!}=\dfrac{1}{1.2};\dfrac{1}{3!}=\dfrac{1}{1.2.3};\dfrac{1}{4!}=\dfrac{1}{1.2.3.4}< \dfrac{1}{3.4};.....;\dfrac{1}{2001!}=\dfrac{1}{1.2.3.4.......2000.2001}< \dfrac{1}{2000.2001}\)

Vậy S<1+1+\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+......+\dfrac{1}{2000.2001}\)

=1+1+1-\(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{2000}-\dfrac{1}{2001}\)

= 3-\(\dfrac{1}{2001}< 3\)

29 tháng 4 2017

\(A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2014}}\\ 3A=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{2013}}\\ 3A-A=\left(3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{2013}}\right)-\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2014}}\right)\\ 2A=3-\dfrac{1}{3^{2014}}\\ A=\left(3-\dfrac{1}{3^{2014}}\right):2\\ A=3:2-\dfrac{1}{3^{2014}}:2\\ A=\dfrac{3}{2}-\dfrac{1}{3^{2014}\cdot2}< \dfrac{3}{2}\)

Vậy \(A< \dfrac{3}{2}\)

23 tháng 4 2017

\(A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2014}}\)

\(3A=3\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2014}}\right)\)

\(3A=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{2013}}\)

\(3A-A=\left(3+1+...+\dfrac{1}{3^{2013}}\right)-\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{2014}}\right)\)

\(2A=3-\dfrac{1}{3^{2014}}\Rightarrow A=\dfrac{3}{2}-\dfrac{\dfrac{1}{3^{2014}}}{2}< \dfrac{3}{2}\)

Vậy \(A< \dfrac{3}{2}\)

4 tháng 5 2018

A=1+13+132+133+...+132014A=1+13+132+133+...+132014

3A=3(1+13+132+133+...+132014)3A=3(1+13+132+133+...+132014)

3A=3+1+13+...+1320133A=3+1+13+...+132013

3A−A=(3+1+...+132013)−(1+13+...+132014)3A−A=(3+1+...+132013)−(1+13+...+132014)

2A=3−132014⇒A=32−1320142<32