Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đại biểu thứ nhất có 8 cách chọn ghế
Đại biểu thứ 2 có 7 cách chọn ghế
Đại biểu thứ 3 có 6 cách
Thứ 4 có 5 cách
Thứ 5 có 4 cách
=> có 8.7.6.5.4=...(cách)
Chọn B
Số cách xếp ngẫu nhiên là 5! cách.
Ta tìm số cách xếp thoả mãn:
+ Chọn 2 vị trí cạnh nhau (3,4) và (4,5) có 2 cách.
+ Xếp A và B vào 2 vị trí cạnh nhau vừa chọn có 2! cách.
+ Xếp 3 người còn lại có 3! cách.
Số cách xếp là 2.2!3!. Xác suất cần tính bằng
Số cách sắp xếp 10 người vào ghế sẽ là một hoán vị của 10:
\(10!=3628800\) (cách).
Đáp án B\
Chú ý: xếp n người vào bàn tròn thì có n cách
Xếp 4 nam vào bàn tròn ta có: 3! = 6 cách
Giữa 4 nam sẽ có 4 vị trí cho 4 nữ
Xếp 4 nữ vào 4 vị trí đó sẽ có: 4! = 24 cách
Số cách xếp thỏa mãn yêu cầu bài toán: 24.6 = 144 cách
Đáp án D.
Cố định em bé Có 2 cách sắp xếp 2 vợ chông và 7! Cách sắp xếp 7 người còn lại Có 2.7! cách sắp xếp.
Mỗi cách sắp xếp chỗ ngồi cho mười người vào mười ghế là một hoán vị của một tập hợp có 10 phần tử.
Vậy có P 10 = 10 ! = 3 . 628 . 800 cách sắp xếp.
ấp án là 360 vì chỉ sắp đặt nên là chỉnh hợp 6 chập 4 hay \(C^4_6=360\)