Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(a-2b+c\right)-\left(a-2b-c\right)\)
\(A=a-2b+c-a+2b+c=2c\)
b) \(B=\left(-x-y+3\right)-\left(-x+2-y\right)\)
\(B=-x-y+3+x-2+y=1\)
c) \(C=2\left(3a+b-1\right)-3\left(2a+b-2\right)\)
\(C=6a+2b-2-6a-3b+6=4-b\)
a. \(A=\left(a-2b+c\right)-\left(a-2b-c\right)=a-2b+c-a+2b+c=0\)
b. \(B=\left(-x-y+3\right)-\left(-x+2-y\right)=-x-y+3+x-2+y=1\)
c. \(C=2\left(3a+b-1\right)-3\left(2a+b-2\right)=6a+2b-2-6b-3b+6=4-3b\)
Biết a=b=c=d
Thay vào M
Ta có:
\(M=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)
\(=4.\frac{2a-a}{a+a}=4.\frac{a}{2a}=4.\frac{1}{2}=2\)
a, \(\frac{a}{5}=\frac{b}{6}=\frac{c}{7}=k\)
\(\Rightarrow\hept{\begin{cases}a=5k\\b=6k\\c=7k\end{cases}}\)
\(\Rightarrow ab=5k\cdot6k=30k^2\)
\(\Rightarrow30k^2=3000\)
\(\Rightarrow k^2=100\)
\(\Rightarrow k=\pm10\)
\(k=10\Rightarrow\hept{\begin{cases}a=5\cdot10=50\\b=6\cdot10=60\\c=7\cdot10=70\end{cases}}\)
b, \(\frac{a}{5}=\frac{b}{6}=\frac{c}{7}\)
\(\Rightarrow\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)
\(\Rightarrow\frac{a^2-b^2+c^2}{25-36+49}=\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)
\(\Rightarrow\frac{152}{38}=\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)
\(\Rightarrow4=\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)
\(\Rightarrow\hept{\begin{cases}a^2=4\cdot25=100\\b^2=4\cdot36=144\\c^2=4\cdot49=196\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=\pm10\\b=\pm12\\c=\pm14\end{cases}}\)
ĐKXĐ: \(c\ne0\)
Có: \(\hept{\begin{cases}a+\frac{b}{c}=11\\b+\frac{a}{c}=14\end{cases}\Leftrightarrow}a+b+\frac{a+b}{c}=25\)
\(\Leftrightarrow\left(a+b\right)\left(1+\frac{1}{c}\right)=\frac{a+b}{c}\cdot\left(c+1\right)=25\)
Vì \(c+1\ne1\)
nên: \(\frac{a+b}{c}=1\)hoặc \(\frac{a+b}{c}=5\)hoặc \(\frac{a+b}{c}=-5\)
\(\left(3x-1\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)
\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)
\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)
a) \(y^{2015}=y^{2020}\)
\(\Leftrightarrow y^{2020}-y^{2015}=0\)
\(\Leftrightarrow y^{2015}.\left(y^5-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y^{2015}=0\\y^5-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}}\)
Vậy ...
b) \(\left(2y-1\right)^{50}=\left(2y-1\right)^1\)
\(\Leftrightarrow\left(2y-1\right)^{50}-\left(2y-1\right)^1=0\)
\(\Leftrightarrow\left(2y-1\right)^1.\left[\left(2y-1\right)^{49}-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(2y-1\right)^1=0\\\left(2y-1\right)^{49}-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{2}\\y=1\end{cases}}\)
Vậy...
Đáp án cần chọn là: D