Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thông cảm , hình ko cho vẽ
Bước 1 : Nối AC
Có 3 trường học xảy ra :
- AC chia tứ giác làm 2 phần diện tích bằng nhau ( AC)
\(-Sadc>Sabc\)
\(-Sadc< Sabc\)
( Xét trường hợp này trường hợp tương tự )
Bước 2 : Vẽ đường thẳng qua D và song song với AC , cắt đường BC ở E .
Bước 3 : Lấy M đi qua trung điểm của BE
Bước 4 : Nối AM
AM sẽ chia tứ giác ABCD thành hai phần có diện tích bằng nhau
Xét tam giác ABC, M là điểm trong tam giác, MD,ME,MF lần lượt là hình chiếu của M lên AB,AC,BC
Kẻ đường cao \(AH\) const
Đặt \(AB=AC=BC=a\)
\(S_{ABC}=S_{AMB}+S_{AMC}+S_{BMC}\\ =\dfrac{1}{2}\left(DM.AB+ME.AC+MF.BC\right)\\ =\dfrac{1}{2}a\left(DM+ME+MF\right)\\ =\dfrac{1}{2}a.AH\\ \Rightarrow DM+ME+MF=AH\\ \RightarrowĐpcm\)
Ta sẽ dùng phản chứng
Gọi 4 cạnh của tứ giác là a , b , c , d ( a,b,c,d \(\inℕ^∗\))
Giả sử không có bất kì 2 cạnh nào bằng nhau
Đặt \(\hept{\begin{cases}x=\frac{b+c+d}{a}\\y=\frac{c+d+a}{b}\\z=\frac{d+a+b}{c}\end{cases}}\left(x;y;z\inℕ^∗\right)\)(Do tổng 3 cạnh bất kì chia hết cho cạnh còn lại)
Theo bất đẳng thức trong tứ giác thì dễ thấy \(x;y;z>1\)
Mà x,y,z là số tự nhiên nên \(x;y;z\ge2\)
Không mất tính tổng quát của bài toán ta giả sử a > b > c > d thì khi đó x < y < z
Ta có : \(\hept{\begin{cases}x\ge2\\y>x\end{cases}}\Rightarrow y\ge3\)
tương tự : \(z\ge4\)
Từ điều giả sử\(\Rightarrow\) \(\hept{\begin{cases}b+c+d\ge2a\\c+d+a\ge3b\\d+a+b\ge4c\end{cases}}\)
Cộng 3 vế vào ta được \(2a+2b+2c+3d\ge2a+3b+4c\)
\(\Rightarrow3d\ge b+2c\)(Vô lí do b > c > d)
Nên điều giả sử là sai
Vậy luôn tồn tại ít nhất 2 cạnh bằng nhau trong tứ giác đó
ta có diện tích hai tam giác AFE bằng BFE ( do tam giác ABF có đường trung tuyến FE)
kết hợp với giả thiết ta có diện tích ADF bằng BCF
hay d(A,DF).DF.1/2=d(B,CF).CF.1/2
hay d(A,DF)=d(B,CF)d(A,DF)=d(B,CF) hay AB song song với DC
vậy => đpcm
Tham Khảo: