Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{7}{10}< \frac{6}{7}< \frac{48}{55}< \frac{12}{11}< \frac{8}{7}< \frac{7}{5}< \frac{3}{2}< \frac{9}{4}\)
Gọi số vịt là x. Vì xếp hàng hai chưa vừa nghĩa là không chia hết cho 2, nên x là số lẻ.
Xếp hàng ba thì thừa 1 con nghĩa là x chia cho 3 thì dư 1.
Xếp hàng 4 chưa tròn, nghĩa là x chia cho 4 còn dư. Nhưng x là số lẻ nên dư này là 1 hoặc 3.
Xếp hàng 5 thì thiếu một con mới đầy nên x chia 5 dư 4 suy ra x có chữ số tận cùng là 4 hoặc 9. Nhưng x là số lẻ nên x có chữ số tận cùng là 9.
Xếp thành hàng 7 đẹp thay do đó x chia hết cho 7.
Giả sử x = 7q. Vì x có chữ số tận cùng là 9 nên q có chữ số tận cùng là 7.
Hơn nữa q không thể là 37 vì 7.37 = 259 > 200.
Do đó q = 7 hoặc q = 17 hoặc q = 27.
Nhưng q không thể là 27 vì khi đó x chia hết cho 3.
Do đó x có thể nhận các giá trị x = 49 hoặc x = 119.
Kiểm tra đầu bài: 119 = 3. 9 + 2 nên 119 chia cho 3 dư 2 trái với đầu bài nên x không thể là 119.
Vậy x = 49 thỏa mãn yêu cầu bài toán.
Gọi số vịt là x. Vì xếp hàng hai chưa vừa nghĩa là không chia hết cho 2, nên x là số lẻ.
Xếp hàng ba thì thừa 1 con nghĩa là x chia cho 3 thì dư 1.
Xếp hàng 4 chưa tròn, nghĩa là x chia cho 4 còn dư. Nhưng x là số lẻ nên dư này là 1 hoặc 3.
Xếp hàng 5 thì thiếu một con mới đầy nên x chia 5 dư 4 suy ra x có chữ số tận cùng là 4 hoặc 9. Nhưng x là số lẻ nên x có chữ số tận cùng là 9.
Xếp thành hàng 7 đẹp thay do đó x chia hết cho 7.
Giả sử x = 7q. Vì x có chữ số tận cùng là 9 nên q có chữ số tận cùng là 7.
Hơn nữa q không thể là 37 vì 7.37 = 259 > 200.
Do đó q = 7 hoặc q = 17 hoặc q = 27.
Nhưng q không thể là 27 vì khi đó x chia hết cho 3.
Do đó x có thể nhận các giá trị x = 49 hoặc x = 119.
Kiểm tra đầu bài: 119 = 3. 9 + 2 nên 119 chia cho 3 dư 2 trái với đầu bài nên x không thể là 119.
Vậy x = 49 thỏa mãn yêu cầu bài toán.
Bài 1:
Gọi UCLN (14n+17;21n+25) là d
ta có: 14 n +17 chia hết cho d => 3.(14n+17) chia hết cho d => 42n + 51 chia hết cho d
21 +25 chia hết cho d => 2.( 21+25) chia hết cho d => 42n + 50 chia hết cho d
=> 42n + 51 - 42n - 50 chia hết cho d
=> 1 chia hết cho d
=> \(A=\frac{14n+17}{21n+25}\)là phân số tối giản
Bài 2:
Để B đạt giá trị lớn nhất => 5/ (x-3)^2 + 1 = 5
=> (x-3)^2 + 1 = 1
(x-3)^2 = 0 = 0^2
=> x - 3 = 0
x = 3
KL: x = 3 để B đạt giá trị lớn nhất
720 :))))
số 720 nhé. HT