K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2019

Câu hỏi của Chu vinh thanh - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo nhé!

9 tháng 5 2019

Cách này cũng đúng nhưng có cách khác nhanh hơn

S = ( 5 + 5^2 + 5^3 + 5^4 ) + .....

Gộp 4 số liên tiếp lại rồi C/M

Chúc học tốt

6 tháng 12 2020
Bạn làm đúng rồi nhưng hơi dài
4 tháng 12 2016

Để chứng tỏ S chia hết cho 65 cần chứng tỏ S chia hết cho 5 và 13

+) chứng minh S chia hết cho 5

Ta có: 

5 chia hết cho 5

52 chia hết cho 5

53 chia hết cho 5

........................

52012chia hết cho 5

​Vậy ta suy ra: S = 5+ 52+53+54+...+52011+52012 chia hết cho 5 (1)

+) chứng minh S chia hết cho 13

Tổng S có 2012 số, nhóm 4 số vào 1 nhóm thì ta vừa hết.

Ta có:

S=( 5+52+53+54) + (56+57+58+59) +...+ ( 52009+ 52010+52011+52012)

  = 5(1+5+52+53)+56(1+5+52+53)+...+52009(1+5+52+53)

  =(1+5+52+52)(5+56+...+52009)

  = 156.(5+56+...+52009)chia hết cho 13(2)

Từ(1) và (2) ta suy ra S chia hết cho 5 và 13.

Mà ƯCLN(5;13)=1

Suy ra S chia hết cho 5.13=65

Vậy S chia hết cho 65.

\

4 tháng 12 2016

cho S = 5 + 5^2 + 5^3 + 5^4 +... + 5^2011 + 5^2012 . chứng tỏ S chia hết cho 65

4 tháng 12 2016

bạn nhóm 4 số lại một nhóm rồi đặt thừa số chung là được

K MÌNH NHA

16 tháng 1 2015

S=(5+52+53+54)+(55+56+57+58)+(59+510+511+512)+...+(52009+52010+52011+52012).(có 503 biểu thức)

S=65*A2+65*B0+65*C0+...+65*D0

Vì mỗi số hạng đều nhân cho 65

=> S chia hết cho 65

18 tháng 3 2018

lam sai rui

9 tháng 5 2019

từ (1) và (2)

=> S ⋮5

mình nghĩ hơi thừa chỉ cần từ (1) là đủ rồi

nên đánh (2) vào"=>S⋮5"

Để khi chứng tỏ thì nói "từ (1) và (2) => S ⋮ 65"

9 tháng 5 2019

1) Ở (1) vô lý nha bạn, tổng S đều có số hạng 5 là sao? số hạng có tận cùng là 5 chứ.

Ok, mik nhận xét thế thôi nhé. Cách trình bày của bạn khá chặt chẽ. Mà bạn viết vào vở thì sử dụng kí hiệu toán học ý, trong toán đừng viết chữ nhiều quá. ( VD: chia hết cho)

3 tháng 4 2016

nhóm 4 số liên tiếp lại với nhau(vì 2012 chia hết cho4) ta có

\(\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+...+\left(5^{2009}+5^{2010}+5^{2011}+5^{2012}\right)\)

\(=780+5^4.780+...+5^{2008}.780\)

\(=780\left(1+5^4+...+5^{2008}\right)\)

Vì 780 chia hết cho 65

=>\(=780\left(1+5^4+...+5^{2008}\right)\) chia hết cho 65

hay S chia hết cho 65