![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : 32S = 32.( 30 + 32 + 34 + .... + 32002 )
=> 9S = 32 + 34 + 36 + .... + 32004
=> 9S - S = ( 32 + 34 + 36 + .... + 32004 ) - ( 30 + 32 + 34 + .... + 32002 )
=> 8S = 32004 - 1
=>S = \(\frac{3^{2004}-1}{8}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Nhân S với 3^2 ta được 9S=3^2+3^4+....+3^2002+3^2004
=>9S-S=(3^2+3^4+....+3^2004)-(3^0+3^2+....+3^2002)
=>8S=3^2004-1
=>S=(3^2004-1)/8
b,ta có S là sô nguyên nên fải chung minh 3^2004-1chia hết cho 7
ta có : 3^2004-1=(3^6)^334-1=(3^6-1).M=728.M=7.104.M
=>3^2004 chia hết cho 7. Mặt khác (7;8)=1 nên S chia hết cho 7
![](https://rs.olm.vn/images/avt/0.png?1311)
S=30+32+34+36+...+32002
9S=32+34+36+38+...+32004
9S-S=32+34+36+...+32004-30+32+34+36+...+32002
8S=32004-30
S=32004-30
8
S = 30 + 32 + 34 + 36 + ... + 32002
S = (30 +32 + 34) + (36 + 38 + 310) + ... + (31998 + 32000 + 32002)
S = 91 + 36.(1+32+34) + ... + 31998.(1+32+34)
S = 91 + 36. 91 + ... + 31998. 91
S= 91. (1+36+...+31998)
S = 7.13. (1+36+...+31998) chia hết cho 7.
Vậy \(S⋮7\).
![](https://rs.olm.vn/images/avt/0.png?1311)
S=1+3^2+3^4+...+3^2002
=(1+3^2+3^4)+...+(3^1998+3^2000+3^2002)
=91+...+3^1998(1+3^2+3^4)
=91+...+3^1998.91
=91(1+...+3^1998) chia hết cho 7
S=1+3^2+3^4+...+3^2002
9S=3^2+3^4+3^6+...+3^2004
9S-S=3^2+3^4+3^6+..+3^2004-1-3^2-3^4-...-3^2002
8S=3^2004-1
S=(3^2004-1):8
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(S=3^0+3^2+3^4+3^6+...+3^{2002}\)
\(\Rightarrow9S=3^2+3^4+3^6+3^8+...+3^{2004}\)
\(\Rightarrow9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2004}\right)-\left(3^0+3^2+3^4+3^6+...+3^{2002}\right)\)
\(\Rightarrow8S=3^{2004}-1\Rightarrow S=\frac{3^{2004}-1}{8}\)
b, Xét dãy số mũ : 0;2;4;6;...;2002
Số số hạng của dãy số trên là :
( 2002 - 0 ) : 2 + 1 = 1002 ( số )
Ta ghép được số nhóm là :
1002 : 3 = 334 ( nhóm )
Ta có : \(S=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{1998}+3^{2000}+3^{2002}\right)\)
\(S=\left(3^0+3^2+3^4\right)+3^6\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)
\(S=1.91+3^6.91+...+3^{1998}.91=\left(1+3^6+...+3^{1998}\right).91\)
Vì : \(91⋮7;1+3^6+...+3^{1998}\in N\Rightarrow S⋮7\) (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
S=\(3^0+3^2+3^4+3^6+.....+3^{2002}\)
3S=\(3^2+3^4+3^6+.....+3^{2002}+3^{2003}\)
3S-S=\(\left(3^2+3^4+3^6+....+3^{2002}+3^{2003}\right)-\left(3^0+3^2+3^4+3^6+....+3^{2002}\right)\)
S=\(3^{2003}-3^0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b) S=(30+32+34)+...+(31998+32000+32002)
S= 91+...+31998(1+32+34)
S=91+...+31998.91
S=91(1+36+...+31998)
S=13.7.(1+36+...+31998) chia hết cho 7
S=30+32+34+...+32002
9S=32+34+36+...+32004
9S-S=32004-1
8S=32004-1
S=\(\frac{3^{2004}-1}{8}\)