Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=(2+98)*(4+6)+...+100+100+102
100*10+....+100+100*102
=224400
Đặt \(A=\frac{5}{4.6}+\frac{5}{6.8}+.....+\frac{5}{48.50}\)
\(\Leftrightarrow\frac{5}{2}A=\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+.....+\frac{2}{48.50}\)
\(\Leftrightarrow\frac{5}{2}A=\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{48}-\frac{1}{50}\)
\(\Leftrightarrow\frac{5}{2}A=\frac{1}{4}-\frac{1}{50}\)
\(\Leftrightarrow\frac{5}{2}A=\frac{23}{100}\Rightarrow A=\frac{23}{100}.\frac{2}{5}=\frac{23}{250}\)
\(E=2\times4+4\times6+6\times8+...+98\times100\)
\(6\times E=2\times4\times6+4\times6\times\left(8-2\right)+6\times8\times\left(10-4\right)+...+98\times100\times\left(102-96\right)\)
\(=2\times4\times6+4\times6\times8-2\times4\times6+...+98\times100\times102-96\times98\times100\)
\(=98\times100\times102\)
\(\Rightarrow E=\frac{98\times100\times102}{6}=166600\)
\(=2\left(\frac{1}{2}-\frac{1}{2010}\right)=\frac{2.2004}{2010}=\frac{2004}{1005}\)
\(=\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+...+\frac{2}{1004\cdot1005}\)
\(=2\cdot\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{1004\cdot1005}\right)\)
\(=2\cdot\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1004}-\frac{1}{1005}\right)\)
\(=2\cdot\left(1-\frac{1}{1005}\right)=2\cdot\frac{1004}{1005}=\frac{2008}{1005}\)
\(\frac{5}{2\cdot4}+\frac{5}{4\cdot6}+\frac{5}{6\cdot8}+.....+\frac{5}{48\cdot60}\)
\(=\frac{5}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+.....+\frac{1}{48}-\frac{1}{50}\right)\)
\(=\frac{5}{2}\left(\frac{1}{2}-\frac{1}{50}\right)\)
Tự tính nốt :p
S = 2*4+4*6+6*8+...+46*48+48*50
S6 = 2*4*6+4*6*6+6*8*6+........................+46*48*6+48*50*6
S6=2*4*(6-0)+4*6*(8-2)+6*8*(10-4)+.................................+46*48*(50-44)+48*50*(52-46)
S6 = 2*4*6+4*6*8-2*4*6+6*8*10-4*6*8+..........................................+46*48*50-44*46*48+48*50*52-46*48*50
S6 = 48*50*52=124800
S=124800/6=20800
\(S=2\cdot4+4\cdot6+...+48\cdot50\)
\(S=2\left(1\cdot2+2\cdot3+...+24\cdot25\right)\)
\(\Rightarrow3S=2\left(1\cdot2\left(3-0\right)+2\cdot3\left(4-1\right)+...+24\cdot25\left(26-23\right)\right)\)
\(\Rightarrow3S=2\left(1\cdot2\cdot3-0\cdot1\cdot2+2\cdot3\cdot4-1\cdot2\cdot3+...+24\cdot25\cdot26-23\cdot24\cdot25\right)\)
\(\Rightarrow3S=2\cdot24\cdot25\cdot26\)
\(\Rightarrow S=2\cdot8\cdot25\cdot26=10400\)
\(\Rightarrow6S=10400\cdot6=62400\)