Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a.
\(\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{7}\right)\)
\(=\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\)
\(=\frac{35-21-15}{105}\)
\(=-\frac{1}{105}\)
b.
\(\frac{3}{5}-\left(\frac{3}{4}-\frac{1}{2}\right)\)
\(=\frac{3}{5}-\frac{3}{4}+\frac{1}{2}\)
\(=\frac{12-15+10}{20}\)
\(=\frac{7}{20}\)
c.
\(\frac{4}{7}-\left(\frac{2}{5}+\frac{1}{3}\right)\)
\(=\frac{4}{7}-\frac{2}{5}-\frac{1}{3}\)
\(=\frac{60-42-35}{105}\)
\(=-\frac{17}{105}\)
2.
a.
\(S=-\frac{1}{1\times2}-\frac{1}{2\times3}-\frac{1}{3\times4}-...-\frac{1}{\left(n-1\right)\times n}\)
\(S=-\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{\left(n-1\right)\times n}\right)\)
\(S=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(S=-\left(1-\frac{1}{n}\right)\)
\(S=-1+\frac{1}{n}\)
b.
\(S=-\frac{4}{1\times5}-\frac{4}{5\times9}-\frac{4}{9\times13}-...-\frac{4}{\left(n-4\right)\times n}\)
\(S=-\left(\frac{4}{1\times5}+\frac{4}{5\times9}+\frac{4}{9\times13}+...+\frac{4}{\left(n-4\right)\times n}\right)\)
\(S=-\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)
\(S=-\left(1-\frac{1}{n}\right)\)
\(S=-1+\frac{1}{n}\)
Chúc bạn học tốt
\(2A=1+\frac{1}{2}+...+\frac{1}{2^{49}}\)
\(2A-A=1-\frac{1}{2^{50}}\)
\(A=1-\frac{1}{2^{50}}\)=> A bé hơn 1
tương tự nha
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)
\(2A=2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)
\(A=1-\frac{1}{2^{50}}< 1\)
\(M=\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{1000}}\)
\(4M=\frac{4}{4}+\frac{4}{4^2}+...+\frac{4}{4^{1000}}\)
\(4M=1+\frac{1}{4}+\frac{1}{4^2}+..+\frac{1}{4^{999}}\)
\(4M-M=\left(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{999}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{1000}}\right)\)
\(3M=1-\frac{1}{4^{1000}}\)
\(M=\left(1-\frac{1}{4^{1000}}\right):3\)
\(M=\frac{4^{1000}-1}{4^{1000}}:3\)
\(M=\frac{4^{1000}-1}{3.4^{1000}}\)
\(\frac{1}{3}=\frac{4^{1000}}{3.4^{1000}}\)
vì \(\frac{4^{1000}-1}{4^{1000}}< \frac{4^{1000}}{3.4^{1000}}\)
nên \(M< \frac{1}{3}\)
3. S= -1/6 + -1/20 + 1/10 + 1/6
=0
4. A= -1 -1 -1 -1 -.... -1 [ có (50-2): 2 +1 = 25 số -1)
=-25
Ta có :
\(C=\frac{1}{4}+\frac{1}{4^2}+.....+\frac{1}{4^{1000}}\)
\(\Rightarrow4C=1+\frac{1}{4}+.....+\frac{1}{4^{1999}}\)
\(\Rightarrow4C-C=\left(1+\frac{1}{4}+.....+\frac{1}{4^{1999}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+.....+\frac{1}{4^{1000}}\right)\)
\(\Rightarrow3C=1-\frac{1}{4^{1000}}\)
\(\Rightarrow C=\frac{1}{3}-\frac{1}{3.4^{1000}}< \frac{1}{3}\)
=> C < 1 / 3
Ta có:
\(C=\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{1000}}\)
\(\Rightarrow4C=1+\frac{1}{4}+...+\frac{1}{4^{999}}\)
\(\Rightarrow4C-C=\left(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{999}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{999}}+\frac{1}{4^{1000}}\right)\)
\(\Rightarrow3C=1-\frac{1}{4^{1000}}\)
\(\Rightarrow C=\left(1-\frac{1}{4^{1000}}\right).\frac{1}{3}\)
\(\Rightarrow C=\frac{1}{3}-\frac{1}{4^{1000}.3}\)
Mà \(\frac{1}{3}>\frac{1}{3}-\frac{1}{4^{1000}.3}\)
\(\Rightarrow C< \frac{1}{3}\)
Vậy \(C< \frac{1}{3}\)
a) \(\frac{1}{4}+\frac{3}{4}x=\frac{3}{4}\Leftrightarrow\frac{3}{4}x=\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\times\frac{4}{3}\Leftrightarrow x=\frac{2}{3}\)
b)\(1\frac{3}{4}x+1\frac{1}{2}=-\frac{4}{5}\Leftrightarrow\frac{7}{4}x+\frac{3}{2}=-\frac{4}{5}\Leftrightarrow\frac{7}{4}x=-\frac{23}{10}\)
\(\Leftrightarrow x=-\frac{23}{10}\times\frac{4}{7}\Leftrightarrow x=-\frac{46}{35}\)
c)\(\frac{3}{4}x+\frac{2}{5}x=1,2\Leftrightarrow x\left(\frac{3}{4}+\frac{2}{5}\right)=1,2\Leftrightarrow\frac{23}{20}x=1,2\)
\(\Leftrightarrow x=1,2\times\frac{20}{23}\Leftrightarrow x=\frac{24}{23}\)
d)\(\frac{3}{7}+\frac{1}{7}:x=\frac{3}{14}\Leftrightarrow\frac{1}{7x}=\frac{3}{14}-\frac{3}{7}\Leftrightarrow\frac{1}{7x}=-\frac{3}{14}\Leftrightarrow14=-3\times7x\)
\(\Leftrightarrow-21x=14\Leftrightarrow x=-\frac{2}{3}\)
e) \(-\frac{3}{4}-\left|\frac{4}{5}-x\right|=-1\Leftrightarrow\left|\frac{4}{5}-x\right|=-\frac{3}{4}+1\Leftrightarrow\left|\frac{4}{5}-x\right|=\frac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{4}{5}-x=\frac{1}{4}\\\frac{4}{5}-x=-\frac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{11}{20}\\x=\frac{21}{20}\end{matrix}\right.\)
a, \(\frac{1}{4}+\frac{3}{4}x=\frac{3}{4}\\ \Rightarrow\frac{3}{4}x=\frac{1}{2}\\ \Rightarrow x=\frac{2}{3}\)
Vậy \(x=\frac{2}{3}\)
b, \(1\frac{3}{4}x+1\frac{1}{2}=\frac{-4}{5}\\ \frac{7}{4}x+\frac{3}{2}=\frac{-4}{5}\\ \Rightarrow\frac{7}{4}x=\frac{-23}{10}\\ \Rightarrow x=\frac{-46}{35}\)
Vậy \(x=\frac{-46}{35}\)
c, \(\frac{3}{4}x+\frac{2}{5}x=1,2\\ x\left(\frac{3}{4}+\frac{2}{5}\right)=\frac{6}{5}\\ x\cdot\frac{23}{20}=\frac{6}{5}\\ \Rightarrow x=\frac{24}{23}\)
Vậy \(x=\frac{24}{23}\)
d, \(\frac{3}{7}+\frac{1}{7}:x=\frac{3}{14}\\ \Rightarrow\frac{1}{7}:x=\frac{-3}{14}\\ \Rightarrow x=\frac{-2}{3}\)
Vậy \(x=\frac{-2}{3}\)
e, \(\frac{-3}{4}-\left|\frac{4}{5}-x\right|=-1\\ \Rightarrow\left|\frac{4}{5}-x\right|=\frac{1}{4}\\ \Rightarrow\left[{}\begin{matrix}\frac{4}{5}-x=\frac{1}{4}\\\frac{4}{5}-x=\frac{-1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{11}{20}\\x=\frac{21}{20}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{11}{20};\frac{21}{20}\right\}\)
- \(\frac{11}{125}-\frac{17}{18}-\frac{5}{7}+\frac{4}{9}+\frac{17}{14}\)
\(=\left(-\frac{17}{18}+\frac{4}{9}\right)+\left(-\frac{5}{7}+\frac{17}{14}\right)+\frac{11}{125}\)
\(=-1+\frac{1}{2}+\frac{11}{125}\)
\(=-1+\frac{147}{125}\)
\(=\frac{22}{125}\)
2. \(1-\frac{1}{2}+2-\frac{2}{3}+3-\frac{3}{4}+4-\frac{1}{4}-3-\frac{1}{3}-2-\frac{1}{2}-1\)
\(=\left(1+2+3+4-3-2-1\right)\)\(+\left(-\frac{1}{2}-\frac{1}{2}\right)+\left(-\frac{2}{3}-\frac{1}{3}\right)+\left(-\frac{3}{4}-\frac{1}{4}\right)\)
\(=4-1-1-1\)
\(=1\)
\(A=\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{1000}}\)
\(\Rightarrow4A=4\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{1000}}\right)\)
\(\Rightarrow4A=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{998}}+\frac{1}{4^{999}}\)
\(\Rightarrow4A-A=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{998}}+\frac{1}{4^{999}}-\frac{1}{4}-\frac{1}{4^2}-\frac{1}{4^3}-...-\frac{1}{4^{999}}-\frac{1}{4^{1000}}\)
\(\Rightarrow3A=1-\frac{1}{4^{1000}}\)
\(\Rightarrow A=\frac{1-\frac{1}{4^{1000}}}{3}\)
làm tiếp nhé ...okok