\(S\)\(=\)\(2^{2010}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

\(S=2^{2010}-2^{2009}-....-2-1\)

\(=2^{2010}-\left(2^{2009}+.....+2+1\right)\)

Đặt \(P=1+2+....+2^{2009}\)

\(2P=2+2^2+.....+2^{2010}\)

\(2P-P=\left(2+2^2+....+2^{2010}\right)-\left(1+2+.....+2^{2009}\right)\)

\(P=2^{2010}-1\)

\(\Rightarrow S=2^{2010}-\left(2^{2010}-1\right)=2^{2010}-2^{2010}+1=1\)

26 tháng 10 2018

\(2^{225}=\left(2^3\right)^{75}=8^{75}< 9^{75}=\left(3^2\right)^{75}=3^{150}\)

\(2^{2009}+2^{2008}+.......+2+1=b\)

\(\Rightarrow2b=2^{2010}+2^{2009}+.........+2^2+2\)

\(\Rightarrow2b-b=2^{2010}-1\Rightarrow b=2^{2010}-1\)

\(\Rightarrow A=2^{2010}-b=2^{2010}-\left(2^{2010}-1\right)=1\)

17 tháng 9 2019

1.a=2009^2009(2009+1)

=2009^2009x2010. tự cm nốt

e tách số mũ ra nhé

a^m>a^n(m>n>0)

22 tháng 10 2018

a, Đặt \(A=2^{2010}+2^{2009}+2^{2008}+...+2^1+2^0\)

\(\Rightarrow2A=2^{2011}+2^{2010}+2^{2009}+...+2^2+2^1\)

\(\Rightarrow2A-A=2^{2011}-2^0\)

\(\Rightarrow A=2^{2011}-1\)

b,\(7^{x+2}+2.7^{x-1}=345\)

\(7^{x-1}.\left(7^3+2\right)=345\)

\(\Rightarrow7^{x-1}.345=345\)

\(\Rightarrow7^{x-1}=345:345=1\)

\(\Rightarrow7^{x-1}=7^0\)

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

Vậy \(x=1\)

26 tháng 10 2018

Thanks bạn nhen . Hi hi.

8 tháng 12 2018

\(\dfrac{2010c-2011b}{2009}=\dfrac{2011a-2009c}{2010}=\dfrac{2009b-2010a}{2011}\)

Đặt: \(\left\{{}\begin{matrix}2009=x\\2010=y\\2011=z\end{matrix}\right.\) Ta có:

\(\dfrac{cy-bz}{x}=\dfrac{az-cx}{y}=\dfrac{bx-ay}{z}\)

\(\Leftrightarrow\dfrac{cxy-bxz}{x^2}=\dfrac{ayz-cxy}{y^2}=\dfrac{bxz-ayz}{z^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{cxy-bxz}{x^2}=\dfrac{ayz-cxy}{y^2}=\dfrac{bxz-ayz}{z^2}=\dfrac{cxy-bxz+ayz-cxy+bxz-ayz}{x^2+y^2+z^2}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}cy=bz\Leftrightarrow\dfrac{b}{y}=\dfrac{c}{z}\\az=cx\Leftrightarrow\dfrac{a}{x}=\dfrac{c}{z}\\bx=ay\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}\end{matrix}\right.\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\Leftrightarrow\dfrac{a}{2009}=\dfrac{b}{2010}=\dfrac{c}{2011}\left(đpcm\right)\)

8 tháng 9 2019

Bài 1:

a) \(\left(\frac{1}{2}\right)^2\)\(\left(\frac{1}{2}\right)^5\)

Ta có: \(\left(\frac{1}{2}\right)^2=\frac{1}{4}.\)

\(\left(\frac{1}{2}\right)^5=\frac{1}{32}.\)

\(\frac{1}{4}< \frac{1}{32}.\)

=> \(\left(\frac{1}{2}\right)^2< \left(\frac{1}{2}\right)^5.\)

b) \(\left(2,4\right)^3\)\(\left(2,4\right)^2\)

Ta có: \(\left(2,4\right)^3=13,824.\)

\(\left(2,4\right)^2=5,76.\)

\(13,284>5,76.\)

=> \(\left(2,4\right)^3>\left(2,4\right)^2.\)

c) \(\left(-1\frac{1}{2}\right)^2\)\(\left(-1\frac{1}{2}\right)^3\)

Ta có: \(\left(-1\frac{1}{2}\right)^2=\left(-\frac{3}{2}\right)^2=\frac{9}{4}.\)

\(\left(-1\frac{1}{2}\right)^3=\left(-\frac{3}{2}\right)^3=-\frac{27}{8}.\)

Vì số dương luôn lớn hơn số âm nên \(\frac{9}{4}>-\frac{27}{8}.\)

=> \(\left(-1\frac{1}{2}\right)^2>\left(-1\frac{1}{2}\right)^3.\)

Chúc bạn học tốt!