Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
a) Có A=\(1+3+3^2+3^3+....+3^{100}\)
\(\Rightarrow\)3A =\(3\left(1+3+3^2+3^3+...+3^{100}\right)\)=\(3+3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow2A=3+3^2+3^3+....+3^{101}-1-3-3^2-3^3-....-3^{100}=3^{101}-1\)\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)
Bài b/c/d : bn cứ lm tương tự.
\(C=1+5^2+5^3+5^4+...+5^{200}\)
\(\Rightarrow C+5=1+5+5^2+5^3+5^4+...+5^{200}\)
\(\Rightarrow C+5=\dfrac{5^{200+1}-1}{5-1}\)
\(\Rightarrow C+5=\dfrac{5^{201}-1}{4}\)
\(\Rightarrow C=\dfrac{5^{201}-1}{4}-5\)
\(\Rightarrow C=\dfrac{5^{201}-21}{4}\)
A = 4 + 44 + 47 + ... + 431
43A = 43.(4 + 44 + 47 + ... + 431)
64A = 44 + 47 + 410 + ... + 434
64A - A = (44 + 47 + ... + 434) - (4 + 44 + ... + 431)
63A = 434 - 4
=> A = \(\frac{4^{34}-4}{63}\)
a) 2x = 16 e) 12x = 144
2x = 24 12x = 122
=> x = 4 => x = 2
b) 2x+1 = 16 các câu còn lại tương tự nhé nhiều quá
2x+1 = 24
x + 1 = 4
=> x = 3
c) 5x+1 = 125
5x+1 = 53
x + 1 = 3
=> x = 2
d) 52x - 1 = 125
52x-1 = 53
2x - 1 = 3
2x = 4
=> x = 2
a)Ta có : 2x = 16
2x = 24
=> x = 4
b) Ta có: 2x+1 = 16
2x+1 = 24
=> x+1 = 4
=> x = 4-1
=> x = 3
Mấy câu sau tương tự vậy đó để hôm khác mình làm tiếp cho bây giờ mình đi ngủ đã buồn ngủ quá hihi ! ^-^
Học tốt nha bạn !
- 22.32.5:22.3-32=3.5-32=15-9=6
- 2.52-22.32:32=2.(52-2)=2.(25-2)=46
3. 33.19-33.12=33.(19-12)=33.7=189
4. 3.52-16:22=3.52-24:22=3.25-4=75-4=71
A = 2^3 + 2^4+ 2^5+ 2^6 + 2^7 + ... + 2^90
2A = 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + .... + 2^90 + 2^100
2A - A = ( 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + .... + 2^90 + 2^100 ) - ( 2^3 + 2^4+ 2^5+ 2^6 + 2^7 + ... + 2^90 )
A = 2^100 - 2^3
B = 1 + 5 + 5^2 + 5^3 + 5^4 + .... + 5^50
5B = 5 + 5^2 + 5^3 + 5^4 + 5^5 + .... + 5^50 + 5^51
5B - B = ( 5 + 5^2 + 5^3 + 5^4 + 5^5 + .... + 5^50 + 5^51 ) - ( 1 + 5 + 5^2 + 5^3 + 5^4 + .... + 5^50 )
4B = 5^51 - 1
B = 5^51 - 1 / 4
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
\(S=1+5+5^2+5^3+...+5^{200}\)
\(\Rightarrow5S=5+5^2+5^3+5^4+...+5^{201}\)
\(\Rightarrow5S-S=\left(5+5^2+5^3+...+5^{201}\right)-\left(1+5+5^2+...+5^{200}\right)\)
\(\Rightarrow4S=5^{201}-1\)
\(\Rightarrow S=\frac{5^{201}-1}{4}\)
\(S=1+5^2+...+5^{200}\)
\(5S=5+5^3+...+5^{201}\)
\(5S-S=\left(5+5^3+...+5^{201}\right)-\left(1+5^2+...+5^{200}\right)\)
\(4S=5+5^{201}-1+5^2\)
\(4S=5^{201}+29\)
\(S=\frac{5^{201}+29}{4}\)