Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Không gian mẫu: \(A_6^3=120\)
Gọi số cần lập có dạng \(\overline{abc}\)
Số chia hết cho 5 \(\Rightarrow c=5\) (1 cách chọn)
Chọn và hoán vị cặp ab: \(A_5^2=20\) cách
\(\Rightarrow1.20=20\) số chia hết cho 5
Xác suất: \(P=\dfrac{20}{120}=\dfrac{1}{6}\)

Chia A thành 3 tập hợp:
B={1;4;7}; C={2;5;8}; D={0;3;6}
TH1: 2 số trong B, 2 số trong C
=>Có \(C^2_3\cdot C^2_3\cdot4!=216\left(cách\right)\)
TH2: 1 số trong B, 1 số trong C, số 0 và 1 số trong D
=>Có 3*3*1*2*3*3*2*1=324 cách
TH3: 1 số trong B, 1 số trong C, 2 số khác 0 trong D
=>Có 3*3*1*4!=216 cách
TH4: 3 số trong B, số 0
=>Có 3*3*2*1=18 cách
TH5: 3 số trong B, 1 số khác 0 trong D
=>Có 2*4!=24*2=48 cách
TH6: 3 số trong C, số 0
=>Có 3*3*2*1=18 cách
TH7: 3 số trong C, 1 số khác 0 trong D
=>Có 2*4!=48 cách
=>Có 216+324+216+18+48+18+48=888 cách

Gọi số cần tìm là \(\overline{abcd}\)
TH1 : a = 6
Số cách chọn chữ số a : 1 cách
Số cách chọn chữ số b : 2 cách
Số cách chọn chữ số c,d : \(A^2_6\)
=> Số các số lập được \(1.2.A^2_6\)
TH2 : a = 7 hoặc a = 8
=> Số các số là : \(2.A^3_7\)
Vậy có tất cả : \(P=1.2.A^2_6+2.A_7^3=480\) số

\(\overline{abc}\)
c có 3 cách
a có 4 cách
b có 3 cách
=>Có 3*4*3=36 cách

Gọi số đó là `\overline{abcdefg}` `(a;b;c;d;e;f;g in S;a ne b ne c ne d ne e ne f ne g;a ne 0)`
`@TH1: 1;2;3` đứng ở vị trí của `a;b;c`
`=>` Có `3!.4!=144` số
`@TH2: 1;2;3` đứng ở vị trí của `b;c;d` hoặc `c;d;e` hoặc `d;e;f` hoặc `e;f;g`
`=>` Có `3!.4.3.3!=432` số
Vậy có tất cả `144+432=576` số t/m.

Chọn 2 chữ số còn lại từ {1;2;4;5} có: \(C_4^2=6\) cách
Hoán vị 3 chữ số: \(3!=6\) cách
Tổng cộng có: \(6.6=36\) số

Gọi số có 6 chữ số dạng \(\overline{abcdef}\)
- TH1: \(f=0\)
\(\Rightarrow\) Bộ abcde có \(A_9^5\) cách chọn và hoán vị
TH2: \(f\ne0\Rightarrow f\) có 4 cách chọn (từ các chữ số 2,4,6,8)
a có 8 cách chọn (khác 0 và f), bộ bcde có \(A_8^4\) cách chọn
\(\Rightarrow4.8.A_8^4\) số
Vậy tổng cộng lập được: \(A_9^5+4.8.A_8^4=68880\) số thỏa mãn

a) Từ 4 chữ số 0, 1, 2, 3:
- Hàng trăm có 3 cách chọn.
- Hàng chục có 3 cách chọn.
- Hàng đơn vị có 2 cách chọn.
Vậy có tất cả 3.3.2 = 18 số tự nhiên khác nhau có 3 chữ số được lập từ 0, 1, 2, 3.
b) - Trường hợp 1: hàng đơn vị là số 0 như vậy hàng trăm có 3 cách chọn, hàng chục có 2 cách chọn.
Có tất cả 1. 2. 3 = 6 số có thể lập được.
- Trường hợp 2: hàng đơn vị là số 2 như vậy hàng trăm có 2 cách chọn, hàng chục có 2 cách chọn.
Có tất cả 1. 2. 2 = 4 số có thể lập được.
Vậy có thể lập 6 + 4 = 10 số tự nhiên chẵn có ba chữ số khác nhau.
120 số
vì cứ 1 số là ta lập được 20 số mà ta có 6 số
=> 20*6=120