K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2020

a)Trên tia MA lấy điểm I sao cho MI=MC

Dễ thấy ΔCIMΔCIM đều ⇒MC=CI⇒MC=CI

Xét 2 tam giác ΔAICΔAICvàΔBMCvàΔBMC có

IC=MCIC=MC

∠IAC=∠MCB∠IAC=∠MCB (vì cùng cộng với ∠BCI=60∘∠BCI=60∘)

AC=BCAC=BC

Do đó ΔAICΔAIC = ΔBMCΔBMC

⇒AI=BM⇒AI=BM

⇒⇒ Đpcm

b) Dễ thấy ΔBAM∼ΔDCMΔBAM∼ΔDCM(g.g)

nên AMCM=BMDM⇒AM.DM=CM.BMAMCM=BMDM⇒AM.DM=CM.BM

⇒AMBM.CM=1MD⇒AMBM.CM=1MD

Áp dụng kết quả câu (a) ta có đpcm

c) Đặt MA=x, MB=y. Ta có

AM2+BM2+CM2=x2+y2+(x−y)2=2(x2+y2−xy)AM2+BM2+CM2=x2+y2+(x−y)2=2(x2+y2−xy) (1)

Kẻ BHBH vuông góc với AMAM

Do ∠BMH=60∘∠BMH=60∘ nên MH=y2,BH2=y2−(y2)2=3y24MH=y2,BH2=y2−(y2)2=3y24

do đó AB2=AH2+BH2=x2+y2−xyAB2=AH2+BH2=x2+y2−xy (2)

Từ (1) và (2) ⇒MA2+MB2+MC2=2AB2⇒MA2+MB2+MC2=2AB2 mà ΔABCΔABC đều 

nên AB=R√3

k cho mình nha!!

17 tháng 8 2020

ta có 

\(S=\frac{1}{10}+\frac{1}{20}+\frac{1}{35}+\frac{1}{56}+\frac{1}{84}+\frac{1}{120}+\frac{1}{165}+\frac{1}{220}\)

\(=6\left(\frac{1}{3\cdot4\cdot5}+\frac{1}{4\cdot5\cdot6}+\frac{1}{6\cdot7\cdot8}+\frac{1}{8\cdot9\cdot10}+\frac{1}{10\cdot11\cdot12}\right)\)

\(=3\left(\frac{1}{3\cdot4}-\frac{1}{11\cdot12}\right)=\frac{5}{22}\)

15 tháng 5 2018

cvfbhm,

23 tháng 3 2021

Xin lỗi em ko biết làm , em vẫn chưa lên lớp 9