K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2018

a, S= 1/1*2 + 1/2*3 + 1/3*4 +...+1/99*100
    S= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/99 - 1/100
    S= 1/1 - 1/100
    S= 100/100 - 1/100
    S= 99/100

b, S= 1/1*3 + 1/3*5 + 1/5*7 +...+1/99*101
    S= 1/2* (2/1*3 + 2/3*5 + 2/5*7 +...+ 2/99*101)
    S= 1/2* (1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 +...+ 1/99 - 1/101)
    S= 1/2* (1/1 - 1/101)
    S= 1/2* (101/101 - 1/101)
    S= 1/2* 100/101
    S= 50/101
Chúc bạn học tốt nha

18 tháng 9 2019

S= (1+2-3-4)-(5+6-7-8)-...-(97+98-99-100)+101+102 S= (-4 -4 -... -4) +101+102 S=(-4).25+101+102 S=-100+101+102 S=103

25 tháng 10 2019

hay phet

2 tháng 8 2015

5,Ta có

A=1/2+1/2^2+1/2^3+...+1/2^100

2A=1+1/2+1/2^2+1^2/3+...+1/2^99

2A-A=(1+1/2+1/2^2+1^2/3+...+1/2^99)-(1/2+1/2^2+1/2^3+...+1/2^100)

A=1-1/2^100

 

 

4 tháng 7 2015

\(A=\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)\cdot3^5+\left(\frac{1}{3^5}+\frac{1}{3^6}+\frac{1}{3^7}+\frac{1}{3^8}\right)\cdot3^9+...+\left(\frac{1}{3^{97}}+\frac{1}{3^{98}}+\frac{1}{3^{99}}+\frac{1}{3^{100}}\right)\cdot3^{101}\)=\(\left(\frac{3^5}{3}+\frac{3^5}{3^2}+\frac{3^5}{3^3}+\frac{3^5}{3^4}\right)+\left(\frac{3^9}{3^5}+\frac{3^9}{3^6}+\frac{3^9}{3^7}+\frac{3^9}{3^8}\right)+...+\left(\frac{3^{101}}{3^{97}}+\frac{3^{101}}{3^{98}}+\frac{3^{101}}{3^{99}}+\frac{3^{101}}{3^{100}}\right)\)

=(3+32+33+34)+(3+32+33+34)+...+(3+32+33+34)

Tổng trên có số số hạng là(mỗi ngoặc là 1 số hạng)

(101-5):4+1=25(số hạng)

=>A=25.(3+32+33+34)=25.120=3000