![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(\sqrt{x^2-4x+4}=3\Leftrightarrow\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow x-2=3\Leftrightarrow x=5\)
b, \(\sqrt{x^2-10x+25}=x+3\Leftrightarrow\sqrt{\left(x-5\right)^2}=x+3\)
\(\Leftrightarrow x-5=x+3\Leftrightarrow0\ne8\)( vô nghiệm )
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\sqrt{3-x}+\sqrt{2-x}=1\)
\(\Rightarrow\sqrt{3+x}=1-\sqrt{2-x}\)
\(\Rightarrow3+x=1-2\sqrt{2-x}+2-x\)
\(\Rightarrow2x+2\sqrt{2-x}=0\)
\(\Rightarrow x+\sqrt{2-x}=0\)
\(\Rightarrow2-x=\left(-x\right)^2\)
\(\Rightarrow2-x=x^2\)
\(\Rightarrow2-x^2-x=0\)
\(\Rightarrow x^2+x-2=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)
Vậy....
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(2\sqrt{3x}-4\sqrt{3x}+27-2\sqrt{3x}=27-4\sqrt{3x}\)
b) \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{8x}+28=3\sqrt{2x}+2\sqrt{8x}+28=3\sqrt{2x}+4\sqrt{2x}+28=7\sqrt{2x}+28\)
c) \(\frac{2}{x^2-y^2}\sqrt{\frac{3\left(x+y\right)^2}{2}}=\frac{2}{\left(x-y\right)\left(x+y\right)}.\frac{\sqrt{3}\left|x+y\right|}{\sqrt{2}}=\frac{\sqrt{6}}{x-y}\)
d) \(\frac{2}{2a-1}\sqrt{5a^2\left(1-4x+4a^2\right)}=\frac{2}{2a-1}\sqrt{5a^2\left(2a-1\right)^2}=\frac{2}{2a-1}.\sqrt{5}\left|a\left(2a-1\right)\right|=2a\sqrt{5}\)
Thiếu ĐKXĐ : ..............
a) Ta có: \(2\sqrt{3x}-4\sqrt{3x}+27-2\sqrt{3x}\)
\(=27-4\sqrt{3x}\)
b) Ta có: \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{8x}+28\)
\(=3\sqrt{2x}-5.2\sqrt{2x}+7.2\sqrt{2x}+28\)
\(=3\sqrt{2x}-10\sqrt{2x}+14\sqrt{2x}+28\)
\(=7\sqrt{2x}+28\)
c) Ta có: \(\frac{2}{x^2-y^2}.\sqrt{\frac{3\left(x+y\right)^2}{2}}\)
\(=\sqrt{\frac{4}{\left(x-y\right)^2.\left(x+y\right)^2}.\frac{3\left(x+y\right)^2}{2}}\)
\(=\sqrt{\frac{2.3}{\left(x-y\right)^2}}\)
\(=\frac{1}{x-y}.\sqrt{6}\)
d) Ta có: \(\frac{2}{2a-1}.\sqrt{5a^2.\left(1-4a+4a^2\right)}\)
\(=\sqrt{\frac{4}{\left(2a-1\right)^2}.5a^2.\left(2a-1\right)^2}\)
\(=2a.\sqrt{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a+b\ge2\sqrt{ab}\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( đúng )
Áp dụng Bunhiacopski ta có:
\(S^2=\left(\sqrt{x-2}+\sqrt{y-3}\right)^2\le\left(1^2+1^2\right)\left(x-2+y-3\right)=2\left(x+y-5\right)=2\)
Dấu "=" bạn xét nốt
![](https://rs.olm.vn/images/avt/0.png?1311)
mấy bài này thì bạn cứ đặt ẩn phụ cho dễ nhìn hơn mà giải nhé
a, \(\hept{\begin{cases}\frac{1}{2x-y}+x+3y=\frac{3}{2}\\\frac{4}{2x-y}-5\left(x+3y\right)=-3\end{cases}}\)ĐK : \(2x\ne y\)
Đặt \(\frac{1}{2x-y}=t;x+3y=u\)hệ phương trình tương đương
\(\hept{\begin{cases}t+u=\frac{3}{2}\\4t-5u=-3\end{cases}\Leftrightarrow\hept{\begin{cases}4t+4u=6\\4t-5u=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}9u=9\\4t=-3+5u\end{cases}}\Leftrightarrow\hept{\begin{cases}u=1\\t=\frac{-3+5}{4}=\frac{1}{2}\end{cases}}}\)
Theo cách đặt \(\hept{\begin{cases}x+3y=1\\\frac{1}{2x-y}=\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=1\\2x-y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+6y=2\\2x-y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}7y=4\\x=\frac{y+2}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{4}{7}\\x=\frac{9}{7}\end{cases}}}\)
Vậy hệ pt có một nghiệm (x;y) = (9/7;4/7)
\(S=\sqrt{x-3}+\sqrt{y-4}=1.\sqrt{x-3}+1.\sqrt{y-4}\)
\(\le\sqrt{\left(1^2+1^2\right)\left(x-3+y-4\right)}\)
\(=\sqrt{2}\)
Dấu \(=\)khi \(\hept{\begin{cases}x-3=y-4\\x+y=8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{7}{2}\\y=\frac{9}{2}\end{cases}}\)
Nếu tìm min
Ta có :
\(s=\sqrt{x-3}+\sqrt{y-8}\)
\(\Rightarrow S^2=x-3+4-x+s\sqrt{\left(x-3\right)\left(4-x\right)}\)
\(=1+\sqrt{\left(x-3\right)\left(4-x\right)}\)\(\ge\)\(1\)
\(\Rightarrow S\ge1\)
Dấu \(=\)xảy ta \(\Leftrightarrow\hept{\begin{cases}\left(x-3\right)\left(4-x\right)=0\\x+y=8\end{cases}}\)