Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)= \(\frac{2}{15}\)
=>5x=\(5\frac{1}{3}:\frac{2}{5}\)
=>5x=\(\frac{40}{3}\)
=>x=\(\frac{8}{3}\)
S = \(\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+...+\frac{1}{17x19}\)
2S = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\)\(\frac{1}{17}-\frac{1}{19}\)
2S = \(\frac{1}{3}-\frac{1}{19}\)
2S = \(\frac{16}{57}\)
S = \(\frac{16}{57}\times\frac{1}{2}\)
S = \(\frac{8}{57}\)
\(S=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}+\frac{1}{255}+\frac{1}{323}\)
\(S=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+\frac{1}{11\cdot13}+\frac{1}{13\cdot15}+\frac{1}{15\cdot17}+\frac{1}{17\cdot19}\)
\(2S=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{15\cdot17}+\frac{2}{17\cdot19}\)
\(2S=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{15}-\frac{1}{17}+\frac{1}{17}-\frac{1}{19}\)
\(2S=\frac{1}{3}-\frac{1}{19}\)
\(2S=\frac{19}{57}-\frac{3}{57}\)
\(2S=\frac{16}{57}\)
\(S=\frac{16}{57}:2\)
\(S=\frac{16}{57}\cdot\frac{1}{2}\)
\(S=\frac{8}{57}\)
Đặt \(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)
\(\Leftrightarrow A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)
\(\Leftrightarrow2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\)
\(\Leftrightarrow2A=\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+\frac{11-9}{9.11}+\frac{13-11}{11.13}\)
\(\Leftrightarrow2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\)
\(\Leftrightarrow2A=\frac{1}{3}-\frac{1}{13}\)
\(\Leftrightarrow2A=\frac{13}{39}-\frac{3}{39}\)
\(\Leftrightarrow2A=\frac{10}{39}\)
\(\Leftrightarrow A=\frac{10}{39}\div2\)
\(\Leftrightarrow A=\frac{20}{39}\)
a) \(\frac{4}{11}-\frac{7}{15}+\frac{7}{11}-\frac{5}{15}\)
\(=\left(\frac{4}{11}+\frac{7}{11}\right)-\left(\frac{7}{15}+\frac{5}{15}\right)\)
\(=1-\frac{4}{5}\)
\(=\frac{1}{5}\)
b) \(\frac{7}{3}-\frac{4}{9}-\frac{1}{3}-\frac{5}{9}\)
\(=\left(\frac{7}{3}-\frac{1}{3}\right)-\left(\frac{4}{9}+\frac{5}{9}\right)\)
\(=2-1\)
\(=1\)
c) \(\frac{1}{4}+\frac{7}{33}-\frac{5}{3}\)
\(=\frac{-1}{4}+\frac{-16}{11}\)
\(=\frac{-75}{44}\)
d) \(\frac{-3}{4}\times\frac{8}{11}-\frac{3}{11}\times\frac{1}{2}\)
\(=\frac{-6}{11}-\frac{3}{22}\)
\(=\frac{15}{22}\)
e) \(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
\(=\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+\frac{1}{9\times11}+\frac{1}{11\times13}+\frac{1}{13\times15}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)
\(=\frac{1}{3}-\frac{1}{15}\)
\(=\frac{4}{15}\)
\(B=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+\frac{1}{11\cdot13}\)
\(=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)=\frac{1}{2}\cdot\frac{10}{39}=\frac{5}{39}\)
\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{1.13}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)=\frac{1}{2}.\frac{10}{39}=\frac{5}{39}\)
\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(A=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(A=2.\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)
\(A=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)
\(A=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(A=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(A=2.\frac{3}{16}\)
\(A=\frac{3}{8}\)
\(B=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)
\(B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)
\(B=\frac{1}{3}-\frac{1}{21}\)
\(B=\frac{2}{7}\)
Ta có :
\(B=\frac{1}{6}-\frac{1}{35}-\frac{1}{63}-\frac{1}{99}-\frac{1}{143}-\frac{1}{195}\)
\(B=\frac{1}{6}-\left(\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\right)\)
\(B=\frac{1}{6}-\frac{1}{2}\left(\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}+\frac{2}{195}\right)\)
\(B=\frac{1}{6}-\frac{1}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\right)\)
\(B=\frac{1}{6}-\frac{1}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)
\(B=\frac{1}{6}-\frac{1}{2}\left(\frac{1}{5}-\frac{1}{195}\right)\)
\(B=\frac{1}{6}-\frac{1}{2}.\frac{38}{195}\)
\(B=\frac{1}{6}-\frac{19}{195}\)
\(B=\frac{9}{130}\)
Vậy \(B=\frac{9}{130}\)
Chúc bạn học tốt ~
S=1/3 + 1/15 + 1/35 + 1/63 + 1/99
=>S=1/1*3+1/3*5+1/5*7+1/7*9+1/9*11
Nhân cả hai vế với 2 ta được:
=>2S=1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11
=>2S=1-1/11
=>2S=11/11-1/11
=>2S=10/11
=>S=10/11 : 2
=>S=5/11
Vậy S= 5/11
\(S=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)
\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(S=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)
\(S=\frac{1}{2}\left(1-\frac{1}{11}\right)\)
\(S=\frac{1}{2}.\frac{10}{11}=\frac{5}{11}\)