\(\dfrac{1}{2^0}\)+ \(\dfrac{2}{2^1}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 6 2024

Lời giải:

$S=\frac{1}{2^0}+\frac{2}{2^1}+\frac{3}{2^2}+....+\frac{2021}{2^{2020}}$

$2S=2+\frac{2}{2^0}+\frac{3}{2^1}+...+\frac{2021}{2^{2019}}$

$\Rightarrow 2S-S=2+\frac{1}{2^0}+\frac{1}{2^1}+...+\frac{1}{2^{2019}}-\frac{2021}{2^{2020}}$

$\Rightarrow S=2+\frac{1}{2^0}+\frac{1}{2^1}+...+\frac{1}{2^{2019}}-\frac{2021}{2^{2020}}$

$2S=4+2+\frac{1}{2^0}+\frac{1}{2^1}+...+\frac{1}{2^{2018}}-\frac{2021}{2^{2019}}$

$\Rightarrow 2S-S=4-\frac{2022}{2^{2019}}$

$\Rightarrow S< 4$

So Sánh

a.\(\dfrac{1}{4}\sqrt{8}\)\(\dfrac{2}{3}\sqrt{12}\)

Có:\(\dfrac{1}{4}\sqrt{8}\)\(\dfrac{2}{3}\sqrt{12}\)

= \(\dfrac{1}{4}.2\sqrt{2}\)\(\dfrac{2}{3}.2\sqrt{3}\)

=\(\dfrac{\sqrt{2}}{2}\)\(\dfrac{4\sqrt{3}}{3}\)

=> \(\dfrac{1}{4}\sqrt{8}< \dfrac{2}{3}\sqrt{12}\)

b. \(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}\)\(6\sqrt{\dfrac{1}{35}}\)

\(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}\)\(6\sqrt{\dfrac{1}{35}}\)

=\(\dfrac{5}{2}.\dfrac{\sqrt{6}}{6}\)\(6.\dfrac{\sqrt{35}}{35}\)

=\(\dfrac{5\sqrt{6}}{12}\)\(\dfrac{6\sqrt{35}}{35}\)

=> \(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}>6\sqrt{\dfrac{1}{35}}\)

c. \(\dfrac{1}{6}\sqrt{18}\)\(\dfrac{1}{2}\sqrt{2}\)

=\(\dfrac{1}{6}.3\sqrt{2}\)\(\dfrac{1}{2}\sqrt{2}\)

=\(\dfrac{\sqrt{2}}{2}\)\(\dfrac{\sqrt{2}}{2}\)

=> \(\dfrac{1}{6}\sqrt{18}=\dfrac{1}{2}\sqrt{2}\)

17 tháng 8 2018

a,\(\dfrac{1}{4}\sqrt{8}=\dfrac{1}{\sqrt{2}}\)

\(\dfrac{2}{3}\sqrt{12}=\dfrac{4}{\sqrt{3}}\)

=> \(\dfrac{1}{4}\sqrt{8}< \dfrac{2}{3}\sqrt{12}\)

27 tháng 10 2022

a: \(Q=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-3x+8\sqrt{x}-5-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5\sqrt{x}+2}{\left(\sqrt{x}+3\right)}\)

b: Để Q=1/2 thì \(\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}=\dfrac{1}{2}\)

=>-10căn x+4=căn x+3

=>-11 căn x=-1

=>x=1/121

Đề bài sai khi \(a=b=c=\dfrac{1}{3}\)

2 tháng 8 2017

TQ:\(S_n=\dfrac{1}{\left(n+n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{n+\left(n+1\right)}\)

Mà theo AM-GM:\(n+\left(n+1\right)\ge2\sqrt{n\left(n+1\right)}\)

\(\Rightarrow S_n\le\dfrac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n\left(n+1\right)}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)

Áp dụng:\(S< \dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{48}}-\dfrac{1}{\sqrt{49}}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{7}\right)=\dfrac{6}{14}=\dfrac{3}{7}\)

2 tháng 8 2017

cảm ơn bạn nhiều

15 tháng 10 2018

a)

<=> \(\dfrac{7}{4\cdot\sqrt{3}}và\dfrac{9}{4\cdot\sqrt{5}}\)

<=> \(\dfrac{7\cdot\sqrt{5}}{4\cdot\sqrt{15}}và\dfrac{9\cdot\sqrt{3}}{4\cdot\sqrt{15}}\)

<=>\(\sqrt{245}và\sqrt{243}\)

<=> \(\sqrt{245}>\sqrt{243}\)

=> \(\dfrac{7}{2}\cdot\sqrt{\dfrac{1}{12}}=\dfrac{9}{4}\cdot\sqrt{\dfrac{1}{5}}\)

15 tháng 10 2018

a)

\(\dfrac{7}{2}\sqrt{\dfrac{1}{12}}=\dfrac{7}{2}\sqrt{\dfrac{12}{12^2}}=\dfrac{7}{2}.\dfrac{\sqrt{12}}{\sqrt{12^2}}=\dfrac{7}{2}.\dfrac{\sqrt{3.4}}{12}=\dfrac{7.2.\sqrt{3}}{2.12}=\dfrac{7\sqrt{3}}{12}=\dfrac{7\sqrt{3}.5}{12.5}=\dfrac{35\sqrt{3}}{60}\)

\(\dfrac{9}{4}\sqrt{\dfrac{1}{5}}=\dfrac{9}{4}\sqrt{\dfrac{5}{5^2}}=\dfrac{9}{4}.\dfrac{\sqrt{5}}{\sqrt{5^2}}=\dfrac{9.\sqrt{5}}{4.5}=\dfrac{9\sqrt{5}}{20}=\dfrac{9\sqrt{5}.3}{20.3}=\dfrac{27\sqrt{5}}{60}\)Ta có \(3675>3645\Leftrightarrow\sqrt{3675}>\sqrt{3645}\Leftrightarrow\sqrt{1225.3}>\sqrt{729.5}\Leftrightarrow35\sqrt{3}>27\sqrt{5}\Leftrightarrow\dfrac{35\sqrt{3}}{60}>\dfrac{27\sqrt{5}}{60}\)

Vậy \(\dfrac{7}{2}\sqrt{\dfrac{1}{12}}>\dfrac{9}{4}\sqrt{\dfrac{1}{5}}\)

b)

\(\sqrt{\dfrac{4}{27}}=\sqrt{\dfrac{4.3}{27.3}}=\dfrac{\sqrt{4.3}}{\sqrt{81}}=\dfrac{2\sqrt{3}}{9}=\dfrac{2\sqrt{3}.26}{9.26}=\dfrac{52\sqrt{3}}{234}\)

\(\sqrt{\dfrac{3}{26}}=\sqrt{\dfrac{3.26}{26^2}}=\dfrac{\sqrt{3.26}}{\sqrt{26^2}}=\dfrac{\sqrt{78}}{26}=\dfrac{9.\sqrt{78}}{26.9}=\dfrac{9\sqrt{78}}{234}\)

Ta có \(8112>6318\Leftrightarrow\sqrt{8112}>\sqrt{6318}\Leftrightarrow\sqrt{2704.3}>\sqrt{81.78}\Leftrightarrow52\sqrt{3}>9\sqrt{78}\Leftrightarrow\dfrac{52\sqrt{3}}{234}>\dfrac{9\sqrt{78}}{234}\)

Vậy \(\sqrt{\dfrac{4}{27}}>\sqrt{\dfrac{3}{26}}\)

bài 1: giải các hệ phương trình 1)\(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)=\(\dfrac{1}{2}\) x+y=9 2) \(\dfrac{2x+1}{4}-\dfrac{y-2}{3}=\dfrac{1}{12}\) \(\dfrac{x+5}{2}-\dfrac{y+7}{3}=-4\) 3)\(2|x|-y=3\) \(|x|+y=3\) 4)\(2\left(x+y\right)+\sqrt{x+1}=4\) \(\left(x+y\right)-3\sqrt{x+1}=-5\) 5) \(\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\) \(\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\) 6)\(\dfrac{1}{x}+\dfrac{3}{2y+1}=2\) \(\dfrac{2}{x}+\dfrac{4}{2y+1}=2\) 7)...
Đọc tiếp

bài 1: giải các hệ phương trình

1)\(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)=\(\dfrac{1}{2}\)

x+y=9

2) \(\dfrac{2x+1}{4}-\dfrac{y-2}{3}=\dfrac{1}{12}\)

\(\dfrac{x+5}{2}-\dfrac{y+7}{3}=-4\)

3)\(2|x|-y=3\)

\(|x|+y=3\)

4)\(2\left(x+y\right)+\sqrt{x+1}=4\)

\(\left(x+y\right)-3\sqrt{x+1}=-5\)

5) \(\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\)

\(\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\)

6)\(\dfrac{1}{x}+\dfrac{3}{2y+1}=2\)

\(\dfrac{2}{x}+\dfrac{4}{2y+1}=2\)

7) \(\dfrac{1}{x}+\dfrac{1}{y}=2\)

\(\dfrac{3}{x}-\dfrac{1}{y}=2\)

8)\(\dfrac{1}{x+2}+\dfrac{3}{2y-1}=4\)

\(\dfrac{4}{x+2}-\dfrac{1}{2y-1}=3\)

9)\(\dfrac{4}{x+y} +\dfrac{1}{y-1}=5\)

\(\dfrac{1}{x+y}-\dfrac{2}{y-1}=-1\)

10)\(\dfrac{7}{\sqrt{2x+3}}-\dfrac{4}{\sqrt{3}-y}=\dfrac{5}{3}\)

\(\dfrac{5}{\sqrt{2x+3}}+\dfrac{3}{\sqrt{3-y}}=\dfrac{13}{6}\)

11)\(\dfrac{3x}{x-1}-\dfrac{2}{y+2}=4\)

\(\dfrac{2x}{x-1}+\dfrac{1}{y+2}=5\)

12) \(\dfrac{7}{\sqrt{x}-7}-\dfrac{4}{\sqrt{y}+6}=\dfrac{5}{3}\)

\(\dfrac{5}{\sqrt{x}-7}+\dfrac{3}{\sqrt{y}+6}2\dfrac{1}{6}\)

13) \(3\sqrt{x-1}+2\sqrt{y}=13\)

\(2\sqrt{x-1}-\sqrt{y}=4\)

14) 6x + 6y = 5xy

\(\dfrac{4}{x}-\dfrac{3}{y}=1\)

1
24 tháng 2 2018

mọi người giúp mk với gianroi

câu 6 sai nha

sửa : \(\dfrac{1}{x}+\dfrac{3}{2y+1}=2\)

\(\dfrac{2}{x}+\dfrac{4}{2y+1}=3\)

AH
Akai Haruma
Giáo viên
25 tháng 5 2018

Lời giải:

a)

Sử dụng pp biến đổi tương đương:

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)

\(\Leftrightarrow (ab+1)(a^2+b^2+2)\geq 2(a^2b^2+a^2+b^2+1)\)

\(\Leftrightarrow ab(a^2+b^2)+2ab\geq 2a^2b^2+a^2+b^2\)

\(\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0\)

\(\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0\)

\(\Leftrightarrow (ab-1)(a-b)^2\geq 0\) (luôn đúng với mọi $ab\geq 1$)

Ta có đpcm.

b) Áp dụng công thức của phần a ta có:

\(\frac{1}{a^4+1}+\frac{1}{b^4+1}\geq \frac{2}{1+(ab)^2}\)

Tiếp tục áp dụng công thức phần a: \(\frac{1}{1+(ab)^2}+\frac{1}{1+b^4}\geq \frac{2}{1+ab^3}\)

Do đó:

\(\frac{1}{a^4+1}+\frac{3}{b^4+1}\geq \frac{4}{1+ab^3}\)

Hoàn toàn tương tự: \(\frac{1}{b^4+1}+\frac{3}{c^4+1}\geq \frac{4}{1+bc^3}; \frac{1}{c^4+1}+\frac{3}{a^4+1}\geq \frac{4}{1+ca^3}\)

Cộng theo vế các BĐT trên thu được:

\(4\left(\frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}\right)\geq 4\left(\frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\right)\)

\(\Leftrightarrow \frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}\geq \frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\)

Ta có đpcm

Dấu bằng xảy ra khi $a=b=c=1$