Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So Sánh
a.\(\dfrac{1}{4}\sqrt{8}\) và \(\dfrac{2}{3}\sqrt{12}\)
Có:\(\dfrac{1}{4}\sqrt{8}\) và \(\dfrac{2}{3}\sqrt{12}\)
= \(\dfrac{1}{4}.2\sqrt{2}\) và \(\dfrac{2}{3}.2\sqrt{3}\)
=\(\dfrac{\sqrt{2}}{2}\)và \(\dfrac{4\sqrt{3}}{3}\)
=> \(\dfrac{1}{4}\sqrt{8}< \dfrac{2}{3}\sqrt{12}\)
b. \(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}\)và \(6\sqrt{\dfrac{1}{35}}\)
Có \(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}\) và \(6\sqrt{\dfrac{1}{35}}\)
=\(\dfrac{5}{2}.\dfrac{\sqrt{6}}{6}\) và \(6.\dfrac{\sqrt{35}}{35}\)
=\(\dfrac{5\sqrt{6}}{12}\) và \(\dfrac{6\sqrt{35}}{35}\)
=> \(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}>6\sqrt{\dfrac{1}{35}}\)
c. \(\dfrac{1}{6}\sqrt{18}\) và \(\dfrac{1}{2}\sqrt{2}\)
=\(\dfrac{1}{6}.3\sqrt{2}\) và \(\dfrac{1}{2}\sqrt{2}\)
=\(\dfrac{\sqrt{2}}{2}\) và \(\dfrac{\sqrt{2}}{2}\)
=> \(\dfrac{1}{6}\sqrt{18}=\dfrac{1}{2}\sqrt{2}\)
a,\(\dfrac{1}{4}\sqrt{8}=\dfrac{1}{\sqrt{2}}\)
\(\dfrac{2}{3}\sqrt{12}=\dfrac{4}{\sqrt{3}}\)
=> \(\dfrac{1}{4}\sqrt{8}< \dfrac{2}{3}\sqrt{12}\)
a: \(Q=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-3x+8\sqrt{x}-5-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5\sqrt{x}+2}{\left(\sqrt{x}+3\right)}\)
b: Để Q=1/2 thì \(\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}=\dfrac{1}{2}\)
=>-10căn x+4=căn x+3
=>-11 căn x=-1
=>x=1/121
TQ:\(S_n=\dfrac{1}{\left(n+n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{n+\left(n+1\right)}\)
Mà theo AM-GM:\(n+\left(n+1\right)\ge2\sqrt{n\left(n+1\right)}\)
\(\Rightarrow S_n\le\dfrac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n\left(n+1\right)}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)
Áp dụng:\(S< \dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{48}}-\dfrac{1}{\sqrt{49}}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{7}\right)=\dfrac{6}{14}=\dfrac{3}{7}\)
a)
<=> \(\dfrac{7}{4\cdot\sqrt{3}}và\dfrac{9}{4\cdot\sqrt{5}}\)
<=> \(\dfrac{7\cdot\sqrt{5}}{4\cdot\sqrt{15}}và\dfrac{9\cdot\sqrt{3}}{4\cdot\sqrt{15}}\)
<=>\(\sqrt{245}và\sqrt{243}\)
<=> \(\sqrt{245}>\sqrt{243}\)
=> \(\dfrac{7}{2}\cdot\sqrt{\dfrac{1}{12}}=\dfrac{9}{4}\cdot\sqrt{\dfrac{1}{5}}\)
a)
\(\dfrac{7}{2}\sqrt{\dfrac{1}{12}}=\dfrac{7}{2}\sqrt{\dfrac{12}{12^2}}=\dfrac{7}{2}.\dfrac{\sqrt{12}}{\sqrt{12^2}}=\dfrac{7}{2}.\dfrac{\sqrt{3.4}}{12}=\dfrac{7.2.\sqrt{3}}{2.12}=\dfrac{7\sqrt{3}}{12}=\dfrac{7\sqrt{3}.5}{12.5}=\dfrac{35\sqrt{3}}{60}\)
\(\dfrac{9}{4}\sqrt{\dfrac{1}{5}}=\dfrac{9}{4}\sqrt{\dfrac{5}{5^2}}=\dfrac{9}{4}.\dfrac{\sqrt{5}}{\sqrt{5^2}}=\dfrac{9.\sqrt{5}}{4.5}=\dfrac{9\sqrt{5}}{20}=\dfrac{9\sqrt{5}.3}{20.3}=\dfrac{27\sqrt{5}}{60}\)Ta có \(3675>3645\Leftrightarrow\sqrt{3675}>\sqrt{3645}\Leftrightarrow\sqrt{1225.3}>\sqrt{729.5}\Leftrightarrow35\sqrt{3}>27\sqrt{5}\Leftrightarrow\dfrac{35\sqrt{3}}{60}>\dfrac{27\sqrt{5}}{60}\)
Vậy \(\dfrac{7}{2}\sqrt{\dfrac{1}{12}}>\dfrac{9}{4}\sqrt{\dfrac{1}{5}}\)
b)
\(\sqrt{\dfrac{4}{27}}=\sqrt{\dfrac{4.3}{27.3}}=\dfrac{\sqrt{4.3}}{\sqrt{81}}=\dfrac{2\sqrt{3}}{9}=\dfrac{2\sqrt{3}.26}{9.26}=\dfrac{52\sqrt{3}}{234}\)
\(\sqrt{\dfrac{3}{26}}=\sqrt{\dfrac{3.26}{26^2}}=\dfrac{\sqrt{3.26}}{\sqrt{26^2}}=\dfrac{\sqrt{78}}{26}=\dfrac{9.\sqrt{78}}{26.9}=\dfrac{9\sqrt{78}}{234}\)
Ta có \(8112>6318\Leftrightarrow\sqrt{8112}>\sqrt{6318}\Leftrightarrow\sqrt{2704.3}>\sqrt{81.78}\Leftrightarrow52\sqrt{3}>9\sqrt{78}\Leftrightarrow\dfrac{52\sqrt{3}}{234}>\dfrac{9\sqrt{78}}{234}\)
Vậy \(\sqrt{\dfrac{4}{27}}>\sqrt{\dfrac{3}{26}}\)
Lời giải:
a)
Sử dụng pp biến đổi tương đương:
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)
\(\Leftrightarrow (ab+1)(a^2+b^2+2)\geq 2(a^2b^2+a^2+b^2+1)\)
\(\Leftrightarrow ab(a^2+b^2)+2ab\geq 2a^2b^2+a^2+b^2\)
\(\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0\)
\(\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0\)
\(\Leftrightarrow (ab-1)(a-b)^2\geq 0\) (luôn đúng với mọi $ab\geq 1$)
Ta có đpcm.
b) Áp dụng công thức của phần a ta có:
\(\frac{1}{a^4+1}+\frac{1}{b^4+1}\geq \frac{2}{1+(ab)^2}\)
Tiếp tục áp dụng công thức phần a: \(\frac{1}{1+(ab)^2}+\frac{1}{1+b^4}\geq \frac{2}{1+ab^3}\)
Do đó:
\(\frac{1}{a^4+1}+\frac{3}{b^4+1}\geq \frac{4}{1+ab^3}\)
Hoàn toàn tương tự: \(\frac{1}{b^4+1}+\frac{3}{c^4+1}\geq \frac{4}{1+bc^3}; \frac{1}{c^4+1}+\frac{3}{a^4+1}\geq \frac{4}{1+ca^3}\)
Cộng theo vế các BĐT trên thu được:
\(4\left(\frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}\right)\geq 4\left(\frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\right)\)
\(\Leftrightarrow \frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}\geq \frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\)
Ta có đpcm
Dấu bằng xảy ra khi $a=b=c=1$
Lời giải:
$S=\frac{1}{2^0}+\frac{2}{2^1}+\frac{3}{2^2}+....+\frac{2021}{2^{2020}}$
$2S=2+\frac{2}{2^0}+\frac{3}{2^1}+...+\frac{2021}{2^{2019}}$
$\Rightarrow 2S-S=2+\frac{1}{2^0}+\frac{1}{2^1}+...+\frac{1}{2^{2019}}-\frac{2021}{2^{2020}}$
$\Rightarrow S=2+\frac{1}{2^0}+\frac{1}{2^1}+...+\frac{1}{2^{2019}}-\frac{2021}{2^{2020}}$
$2S=4+2+\frac{1}{2^0}+\frac{1}{2^1}+...+\frac{1}{2^{2018}}-\frac{2021}{2^{2019}}$
$\Rightarrow 2S-S=4-\frac{2022}{2^{2019}}$
$\Rightarrow S< 4$