K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

S1 = 1-2+3-4+...+1997-1998+1999

S1 = ( 1-2)+(3-4)+...+(1997-1998)+1999

= -1+-1+-1+...+-1+1999

= (-1) x999 + 1999 = -999 + 1999 = 1000

S2 = 1-4+7-10+...-2998+3001

S2 = (1-4)+(7-10)+...+(2995-2998) + 3001

= -3 + -3 + ... + -3 + 3001

= .......

1 tháng 2 2017

a)S1=1-2+3-4+...+1997-1998+1999

   S1=(1-2)+(3-4)+...+(1997-1998)+1999

   S1=(-1)+(-1)+...+(-1)+1999          Vì dãy S1có 1999 số hạng => Dãy S1 có 999 cặp -1 và 1999.

   S1=(-1).999+1999

   S1=-999+1999

   S1=1000

b)S2=1-4+7-10+...-2998+3001

   S2=(1-4)+(7-10)+...+(2995-2998)+3001

   S2=(-3)+(-3)+...+(-3)+3001               Dãy S2 có 1001 số hạng => Dãy S2 có 500 cặp -3 và 3001.

   S2=(-3).500+3001

   S2=-1500+3001

   S2=1501

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:

$S=1+(-2)+3+(-4)+....+49+(-50)$

$=[1+(-2)]+[3+(-4)]+....+[49+(-50)]$

$=(-1)+(-1)+(-1)+....+(-1)$

Số lần xuất hiện của $-1$: $[(50-1):1+1]:2=25$ (lần)

$S=(-1).25=-25$

20 tháng 4 2015

S=\(\frac{1}{1}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)-\(\frac{1}{10}\)+...+\(\frac{1}{100}\)-\(\frac{1}{103}\)+\(\frac{1}{103}\)-\(\frac{1}{104}\)+\(\frac{1}{104}\)-\(\frac{1}{105}\)+\(\frac{1}{105}\)-\(\frac{1}{106}\)+\(\frac{1}{106}\)-\(\frac{1}{107}\)

S=1-\(\frac{1}{107}\)

S=\(\frac{106}{107}\)

(Ở đề bài, ở phân số cuối cùng 1/106+107 nên sửa lại thành 1/106.107 sẽ được kết quả như trên)

20 tháng 4 2015

Ta có: \(S=\frac{1}{1}-\frac{1}{103}+\frac{1}{103}-\frac{1}{107}\)

          \(S=1-\frac{1}{107}=\frac{106}{107}\)

18 tháng 4 2015

Trong trường hợp bn viết nhầm 1/106.107 chứ ko phải 1/106+107

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}+\frac{1}{103.104}+\frac{1}{104.105}+\frac{1}{105.106}+\frac{1}{106.107}\)

\(S=\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)+\left(\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}+\frac{1}{105}-\frac{1}{106}+\frac{1}{106}-\frac{1}{107}\right)\)

\(S=\left(1-\frac{1}{103}\right)+\left(\frac{1}{103}-\frac{1}{107}\right)\)

\(S=\frac{102}{103}+\frac{4}{11021}\)

\(S=\frac{106}{107}\)

18 tháng 4 2015

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}+\frac{1}{103.104}+\frac{1}{104.105}+\frac{1}{105.106}+\frac{1}{106+107}\)

\(S=\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)+\left(\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}+\frac{1}{105}-\frac{1}{106}\right)+\frac{1}{106+107}\)

\(S=\left(1-\frac{1}{103}\right)+\left(\frac{1}{103}-\frac{1}{106}\right)+\frac{1}{106+107}\)

\(S=\frac{102}{103}+\frac{3}{10918}+\frac{11343}{106}\)

\(S=108\)

1 tháng 12 2015

S=(-1+2)+...+(-99+100)[co 50 cap so]

S=1+1+1+...+1+1[50 so 1]

S=50x1

S=50

5 tháng 5 2016

Công thức tổng quát:

\(1^2+2^2+...+\left(n-1\right)^2+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

Áp dụng công thức tổng quát:

Ta có: \(S=\frac{99\times100\times199}{6}=328350\)

5 tháng 5 2016

S = (1 + 2 + 3 + 4 + ... + 98 + 99 + 100)2

S = 50502

S = 25502500

Công thức

a2 + b2 + ... + n2 hoặc lập phương

nhóm các số hang vào ngoặc rồi còn số 2, 3 để ở ngoài