\(⋮\)4

b, CMR:S

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2017

S = 1 + 3 + 3+..+399

=> S = (1 + 3) + ... + (3^98 + 3^99)

=> S = (1 + 3) + ... + 3^98.(1 + 3)

=> S = 4 + ... + 3^98.4

=> S = 4.(1 +... + 3^98) chia hết cho 4 (Đpcm)

13 tháng 7 2016

a) \(9\cdot3^3\cdot\frac{1}{81}\cdot3^2=3^2\cdot3^3\cdot\left(\frac{1}{3}\right)^43^2=3^7\cdot\frac{1}{3^4}=3^3\)

b) \(4\cdot2^5:\left(2^3\cdot\frac{1}{16}\right)=2^2\cdot2^5:\left(2^3\cdot\frac{1}{2^4}\right)=2^7:\frac{1}{2}=2^8\)

c) \(3^2\cdot2^5\cdot\left(\frac{2}{3}\right)^2=3^2\cdot2^5\cdot\frac{2^2}{3^2}=2^7\)

d) \(\left(\frac{1}{3}\right)^2\cdot\frac{1}{3}\cdot9^2=\frac{1}{3^2}\cdot\frac{1}{3}\cdot3^4=\frac{1}{3^3}\cdot3^4=3\)

13 tháng 7 2016

a)9.33.\(\frac{1}{81}\).32

   =32.33.34.\(\frac{1}{3^4}\).32

    =311.\(\frac{1}{3^4}\)

    =37

b)4.25:(\(2^3.\frac{1}{16}\))

  =22.25:(\(2^3.\frac{1}{2^4}\))

  =27:\(\frac{2^3}{2^4}\)

  =27.\(\frac{2^4}{2^3}\)

   =\(\frac{2^{11}}{2^3}\)

   =28

c)32.25.\(\left(\frac{2}{3}\right)^2\)

   =32.25.\(\frac{2^2}{3^2}\)

   =\(\frac{3^2.2^5.2^2}{3^2}\)

   =27

d)\(\left(\frac{1}{3}\right)^2.\frac{1}{3}.9^2\)

    =\(\frac{1^2}{3^2}.\frac{1}{3}.\left(3^2\right)^2\)

    =\(\frac{1^2}{3^2}.\frac{1}{3}.3^4\)

    =\(\frac{1^2}{3^2}.\frac{3^4}{3}\)

    =\(\frac{1^2}{3^2}.3^3\)

   =3

AH
Akai Haruma
Giáo viên
9 tháng 7 2018

a) \(2^{2014}\)\(3^{1343}\)

Ta có:

\(2^{2014}=(2^3)^{\frac{2014}{3}}=8^{\frac{2014}{3}}< 9^{\frac{2014}{3}}\)

\(3^{1343}=(3^2)^{\frac{1343}{2}}=9^{\frac{1343}{2}}> 9^{\frac{2014}{3}}\)

\(\rightarrow 2^{2014}< 3^{1343}\)

b) \(31^{11}\)\(17^{44}\)

Có: \(17^{44}=(17^4)^{11}> (17.2)^{11}>31^{11}\)

AH
Akai Haruma
Giáo viên
9 tháng 7 2018

c)

\(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{50}}\)

\(\Rightarrow 2A=1+\frac{1}{2^1}+\frac{1}{2^2}+..+\frac{1}{2^{49}}\)

Lấy vế sau trừ vế trước thu được:

\(2A-A=1-\frac{1}{2^{50}}< 1\)

\(\Leftrightarrow A< 1\)

d) \(B=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

\(\Rightarrow 3B=1+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

Lấy vế sau trừ vế trước:

\(\Rightarrow 3B-B=1-\frac{1}{3^{100}}< 1\)

\(\Leftrightarrow 2B< 1\Rightarrow B< \frac{1}{2}\)

13 tháng 9 2019

Bài 1:

1. \(x:-\left(-\frac{1}{2}\right)=-\frac{1}{2}\)

\(x:\frac{1}{2}=-\frac{1}{2}\)

\(x=\left(-\frac{1}{2}\right).\frac{1}{2}\)

\(x=-\frac{1}{4}\)

Vậy \(x=-\frac{1}{4}.\)

3. \(\frac{16}{2^n}=2\)

\(2^n=16:2\)

\(2^n=8\)

\(2^n=2^3\)

\(n=3\)

Vậy \(n=3.\)

4. \(\frac{-3^n}{81}=-27\)

\(\left(-3\right)^n=\left(-27\right).81\)

\(\left(-3\right)^n=-2187\)

\(\left(-3\right)^n=\left(-3\right)^7\)

\(n=7\)

Vậy \(n=7.\)

Chúc bạn học tốt!

13 tháng 9 2019

cảm ơn bạn Vũ Minh Tuấn nhé yeu

20 tháng 6 2016

Câu 1

4 p/s   cộng thêm 1,p/s cuối trừ 4 rồi nhóm vs nhau

d/s la x= - 329

Câu   2

NHân vs 7 thành 7S rồi rút gọn là đc

 

20 tháng 6 2016

Câu 1 :

a) \(\Leftrightarrow\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\left(\frac{x+349}{5}-4\right)=0\)

\(\Leftrightarrow\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)

\(\Rightarrow\left(x+329\right).\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)

Dễ thấy \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}\ne0\) \(\Rightarrow x+329=0\Rightarrow x=-329\)

a: \(A=\left(5xy-2xy+1.3xy\right)+3x-2y-3.5y^2\)

\(=4.3xy+3x-2y-3.5y^2\)

b: \(B=\left(\dfrac{1}{2}ab^2-\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2\right)+\left(\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b\right)\)

\(=-\dfrac{7}{8}ab^2+\dfrac{3}{8}a^2b\)

c: \(C=\left(2a^2b+5a^2b\right)+\left(-8b^2-3b^2\right)+\left(5c^2+4c^2\right)\)

\(=7a^2b-11b^2+9c^2\)

AH
Akai Haruma
Giáo viên
9 tháng 7 2018

b) \(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2018}\right)\)

\(=\frac{2-1}{2}.\frac{3-1}{3}.\frac{4-1}{4}....\frac{2018-1}{2018}\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2017}{2018}=\frac{1.2.3...2017}{2.3.4...2018}=\frac{1}{2018}\)

c) Giữa các biểu thức là dấu nhân hay dấu cộng vậy bạn?

AH
Akai Haruma
Giáo viên
9 tháng 7 2018

d)

\(D=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(D=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

e) \(E=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{97.99}\)

\(2E=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(2E=\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+....+\frac{99-97}{97.99}\)

\(2E=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)

\(\Rightarrow E=\frac{16}{99}\)

30 tháng 9 2017

3/ ta để ý thấy ở số mũ sẽ có thừa số 1000-103=0

nên số mũ chắc chắn bằng 0

mà số nào mũ 0 cũng bằng 1 nên A=1

5/ vì |2/3x-1/6|> hoặc = 0

nên A nhỏ nhất khi |2/3x-6|=0

=>A=-1/3

6/ =>14x=10y=>x=10/14y

23x:2y=23x-y=256=28

=>3x-y=8

=>3.10/4y-y=8

=>6,5y=8

=>y=16/13

=>x=10/14y=10/14.16/13=80/91

8/106-57=56.26-56.5=56(26-5)=59.56 

có chứa thừa số 59 nên chia hết 59

4/ tính x 

sau đó thế vào tinh y,z

8 tháng 9 2017

a) 4. ( 1.1/4)2 + [(3/4)2 : (5/4)3] : (3/2)3

= 4.1/16 + [9/16 : 125/64] : 27/8

\(\frac{1}{4}+\frac{9}{16}:\frac{125}{64}:\frac{27}{8}=\frac{1}{4}+\frac{36}{125}:\frac{27}{8}\)

\(\frac{1}{4}+\frac{36}{125}.\frac{8}{27}\)

=\(\frac{1}{4}+\frac{32}{375}=\frac{375}{1500}+\frac{128}{1500}=\frac{503}{1500}\)

8 tháng 9 2017

b] = 2^3 + 3 x 1 - 1 + ( 2^2 x 2 ) x 2^3

= 2^3 + 3 - 1 + 2^3 x 2^3

= 2^3 + 2 + 2^6 = 74

a] = 4 x ( 1/4 ) + ( 32/42 : 53/43 ) : 27/8

= 4 x 1/16 + ( 32 x 4/53 ) x 8/27

= 1/4 + 36/5x 8/27 = 1/4 + 4/125 x 8/3 = 503/1500 sấp sỉ 0,335333