\(\sqrt{3-2\sqrt{2}}-\sqrt{3+2\sqrt{2}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TK:"https://www.google.com.vn/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjF-cL3pJzxAhWbPXAKHTjTAxwQFjABegQIBRAD&url=https%3A%2F%2Fhoidap247.com%2Fcau-hoi%2F996088&usg=AOvVaw3JxumatFPaPIuCWni48U22"

16 tháng 6 2021

`sqrt{3-2sqrt2}-sqrt{3+2sqrt2}`

`=sqrt{2-2sqrt2+1}-sqrt{2+2sqrt2+1}`

`=sqrt{(sqrt2-1)^2}-sqrt{(sqrt2+1)^2}`

`=sqrt2-1-sqrt2-1=-2`

1 tháng 10 2016

\(A=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}=\left(\sqrt{2}+1\right)-\left(\sqrt{2}-1\right)=2\)

\(B=\sqrt{18+8\sqrt{2}}+\sqrt{18-8\sqrt{2}}=\sqrt{\left(\sqrt{2}+4\right)^2}+\sqrt{\left(4-\sqrt{2}\right)^2}=4+\sqrt{2}+4-\sqrt{2}=8\)

\(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{4+2\sqrt{3}}}}=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)

\(=\sqrt{6+2\sqrt{2}.\sqrt{2-\sqrt{3}}}=\sqrt{6+\frac{2\sqrt{2}}{\sqrt{2}}.\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{6+2.\sqrt{\left(\sqrt{3}-1\right)^2}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

5 tháng 9 2020

\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{2}\left(\sqrt{2+\sqrt{3}}\right)\)  

\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{2\left(2+\sqrt{3}\right)}\)   

\(=\left(2\sqrt{3}+2-3-\sqrt{3}\right)\sqrt{4+2\sqrt{3}}\)  

\(=\left(\sqrt{3}-1\right)\sqrt{3+2\sqrt{3}+1}\)  

\(=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot1+1^2}\) 

\(=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}+1\right)^2}\)   

\(=\left(\sqrt{3}-1\right)|\sqrt{3}+1|\)    

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)  

\(=\left(\sqrt{3}\right)^2-1^2\)  

\(=3-1\)   

\(=2\)

24 tháng 7 2020

A = \(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)

A = \(\sqrt{2}+1-\sqrt{2}+1\)

A = 2

24 tháng 7 2020

B = \(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)

B = \(2-\sqrt{3}+\sqrt{3}+2\)

B = 4

13 tháng 6 2019

giải giúp mình đi mai là mình đi học rồi

13 tháng 6 2019

Ta có:

bla bla ........

vậy đáp số là... quên mất rồi

20 tháng 7 2016

\(\frac{\sqrt{9-4\sqrt{5}}}{2-\sqrt{5}}\)

\(\frac{\sqrt{2^2-2\sqrt{5}2+\sqrt{5^2}}}{2-\sqrt{5}}\)

\(\frac{\sqrt{\left(2-\sqrt{5}\right)^2}}{2-\sqrt{5}}\)

\(\frac{\sqrt{5}-2}{2-\sqrt{5}}\)

= -1

Chúc bạn làm bài tốt :)

29 tháng 6 2019

\(A=\sqrt{\left(3+2\sqrt{3}\right)^2-5}=\sqrt{16+12\sqrt{3}}=2\sqrt{4+3\sqrt{3}}.\)

P/s: Đề có thể là như này số sẽ đẹp:

\(A=\sqrt{3+\sqrt{5+2\sqrt{3}}}.\sqrt{3-\sqrt{5+2\sqrt{3}}}=\sqrt{9-5-2\sqrt{3}}=\sqrt{4-2\sqrt{3}}\)\(=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

29 tháng 6 2019

\(B=\sqrt{4+\sqrt{8}}.\sqrt{4-2-\sqrt{2}}=\sqrt{\left(4+\sqrt{8}\right)\left(2-\sqrt{2}\right)}=2\sqrt{\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)}=2\)

13 tháng 8 2017

=\(\sqrt{3}-1+2-\) \(\sqrt{3}=1\)

b.=\(\frac{2+\sqrt{3}-2+\sqrt{3}}{2^2-3}=2\sqrt{3}\)