\(\left(\dfrac{x^2}{x+y}+y\right).\left(\dfrac{1}{x^2-xy}-\dfrac{3y^2}{x^4-xy^3}-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

\(=\frac{x^2+xy+y^2}{x+y}.\left(\frac{1}{\left(x-y\right)x}-\frac{3y^2}{x\left(x^3-y^3\right)}-\frac{y}{x\left(x^2+xy+y^2\right)}\right)\)

\(=\frac{x^2+xy+y^2}{x+y}.\frac{x^2+xy+y^2-3y^2-xy+y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{x^2-y^2}{x\left(x-y\right)\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)}{x\left(x-y\right)\left(x+y\right)}=\frac{1}{x}\)

31 tháng 5 2017

\(\left(\dfrac{x^2}{x+y}+y\right).\left(\dfrac{1}{x^2-xy}-\dfrac{3y^3}{x^4-xy^3}-\dfrac{y}{x^3+x^2y+xy^2}\right)\)

\(=\left(\dfrac{x^2+xy+y^2}{x+y}\right).\left(\dfrac{1}{x\left(x-y\right)}-\dfrac{3y^2}{x\left(x^3-y^3\right)}-\dfrac{y}{x\left(x^2+xy+y^2\right)}\right)\)\(=\left(\dfrac{x^2+xy+y^2}{x+y}\right).\left(\dfrac{x^2+xy+y^2}{x\left(x^3-y^3\right)}-\dfrac{3y^2}{x\left(x^3-y^3\right)}-\dfrac{xy-y^2}{x\left(x^3-y^3\right)}\right)\)

\(=\dfrac{x\left(x^3-y^3\right)}{x^3-xy^2}.\dfrac{x^2+xy+y^2-3y^2-xy+y^2}{x\left(x^3-y^3\right)}\\ =\dfrac{x^2-y^2}{x\left(x^2-y^2\right)}=\dfrac{1}{x}\)

14 tháng 12 2018

\(a,\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}:\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(=\left(\frac{x}{y\left(x-y\right)}+\frac{y-2x}{x\left(x-y\right)}\right):\left(\frac{y}{xy}+\frac{x}{xy}\right)\)

\(=\left(\frac{x-y}{x\left(x-y\right)}\right):\left(\frac{x+y}{xy}\right)\)

\(=\frac{1}{x}.\frac{xy}{x+y}=\frac{y}{x+y}\)

7 tháng 12 2017

a,\(\frac{x^2+y^2-xy}{x^2-y^2}:\frac{x^3+y^3}{x^2+y^2-2xy} =\frac{x^2+y^2-xy}{(x-y)(x+y)}\frac{(x+y)^2}{(x+y) (x^2-xy+y^2)}=\frac{1}{x-y} \)

b,\(\frac{x^3y+xy^3}{x^4y}:(x^2+y^2)=\frac{xy(x^2+y^2)}{x^4y(x^2+y^2)}=\frac{1}{x^3} \)

c,\(\frac{x^2-xy}{y}:\frac{x^2-xy}{xy+y}:\frac{x^2-1}{x^2+y} =\frac{x(x-y)y(x+y)(x^2+y)}{yx(x-y)(x^2-1)} =\frac{(x^2+y)(x+y)}{x^2-1} \)

d,\(\frac{x^2+y}{y}:(\frac{z}{x^2}:\frac{xy}{x^2y})=\frac{x^2+y}{ y}:(\frac{z}{x^2}\frac{x^2y}{xy})=\frac{x^2+y}{y}\frac{z}{x} \)

a: \(=\left(\dfrac{x}{y\left(x-y\right)}-\dfrac{2x-y}{x\left(x-y\right)}\right):\dfrac{x+y}{xy}\)

\(=\dfrac{x^2-2xy+y^2}{xy\left(x-y\right)}\cdot\dfrac{xy}{x+y}\)

\(=\dfrac{\left(x-y\right)^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{x-y}{x+y}\)

b: \(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x-y\right)\left(x+y\right)}\cdot\dfrac{x-y}{2y}\)

\(=\dfrac{4xy+4y^2}{2\left(x+y\right)}\cdot\dfrac{1}{2y}=\dfrac{4y\left(x+y\right)}{4y\left(x+y\right)}=1\)

a: \(=\dfrac{4x^2+4x+1-\left(4x^2-4x+1\right)}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{5\left(2x-1\right)}{4x}\)

\(=\dfrac{8x}{2x+1}\cdot\dfrac{5}{4x}=\dfrac{10}{2x+1}\)

c: \(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\left(\dfrac{x+1-x+1}{\left(x-1\right)^2\cdot\left(x+1\right)}\right)\)

\(=\dfrac{1}{x-1}-\dfrac{x}{x^2+1}\cdot\dfrac{2}{\left(x-1\right)}=\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{x-1}{x^2+1}\)

24 tháng 6 2017

Phân thức đại số

Phân thức đại số

4 tháng 12 2017

\(a,\dfrac{x^3-3x^2-x+3}{x^2-3x}=\dfrac{x^2\left(x-3\right)-\left(x-3\right)}{x\left(x-3\right)}=\dfrac{\left(x-3\right)\left(x^2-1\right)}{x\left(x-3\right)}=\dfrac{x^2-1}{x}\)

\(b,\dfrac{x^3y+xy^3+xy}{x^3+y^3+x^2y+xy^2+x+y}\)

\(=\dfrac{xy\left(x^2+y^2+1\right)}{\left(x^3+xy^2+x\right)+\left(y^3+x^2y+y\right)}\)

\(=\dfrac{xy\left(x^2+y^2+1\right)}{x\left(x^2+y^2+1\right)+y\left(x^2+y^2+1\right)}\)

\(=\dfrac{xy\left(x^2+y^2+1\right)}{\left(x^2+y^2+1\right)\left(x+y\right)}\)

\(=\dfrac{xy}{x+y}\)

\(c,\dfrac{\left(3x+2\right)^2-\left(x+2\right)^2}{x^3-x^2}\)

\(=\dfrac{\left(3x+2-x-2\right)\left(3x+2+x+2\right)}{x\left(x^2-1\right)}\)

\(=\dfrac{2x.\left(4x+4\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{8\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{8}{x-1}\)

12 tháng 9 2017

Đặt \(A=\left[\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-1}{x^2-xy-2y^2}\right):\dfrac{4x^4+4x^2y+y^2-4}{x^2+x+xy+y}\right]:\dfrac{x+1}{2x^2+y+2}\)

\(A=\left[\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-1}{\left(x+y\right).\left(x-2y\right)}\right):\dfrac{\left(2x^2+y+2\right).\left(2x^2+y-2\right)}{\left(x+y\right).\left(x+1\right)}\right]:\dfrac{x+1}{2x^2+y+2}\)

\(A=\left(\dfrac{\left(x-y\right).\left(x+y\right)+x^2+y^2+y-2}{\left(x+y\right).\left(2y-x\right)}.\dfrac{\left(x+y\right).\left(x+1\right)}{\left(2x^2+y+2\right).\left(2x^2+y-2\right)}\right):\dfrac{2x^2+y+2}{x+1}\)

\(A=\left(\dfrac{2x^2+y-2}{2y-x}.\dfrac{x+1}{2x^2+y-2}\right).\dfrac{1}{x+1}\)

\(A=\dfrac{1}{2y-x}\)

Thay \(x=-1,76\)\(y=\dfrac{3}{25}\) vào biểu thức ta được:

\(A=\dfrac{1}{2.\dfrac{3}{25}-\left(-1,76\right)}\)

\(A=\dfrac{1}{2}\)