\(\frac{\sqrt{k}+1}{\sqrt{3}-1}\times1+\left(\sqrt{k}+\sqrt{3}\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

a. ĐKXĐ \(x\ge0\)và \(x\ne9\)

Ta có \(K=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(x-2\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)

b. Để \(K< -1\Rightarrow\frac{3\sqrt{x}-9+\sqrt{x}+3}{\sqrt{x}+3}< 0\Rightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\Rightarrow4\sqrt{x}-6< 0\)vì \(\sqrt{x}+3\ge3\)

\(\Rightarrow0\le x< \frac{9}{4}\left(tm\right)\)

Vậy với \(0\le x< \frac{9}{4}\)thì K<-1

c. \(K=\frac{3\sqrt{x}-9}{\sqrt{x}+3}=3+\frac{-18}{\sqrt{x}+3}\)

Ta có \(\sqrt{x}+3\ge3\Rightarrow\frac{1}{\sqrt{x}+3}\le\frac{1}{3}\Rightarrow-\frac{18}{\sqrt{x}+3}\ge-6\Rightarrow3+\frac{-18}{\sqrt{x}+3}\ge-3\)

\(\Rightarrow K\ge-3\)

Vậy \(MinK=-3\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)

18 tháng 5 2018

1/ a/  \(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}-1+2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(K=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(K=\frac{\sqrt{a}+1}{\sqrt{a}}:\frac{1}{\sqrt{a}-1}=\frac{\sqrt{a}+1}{\sqrt{a}}.\left(\sqrt{a}-1\right)\)

\(K=\frac{a-1}{\sqrt{a}}\)

b/ Với \(a=3+2\sqrt{2}\) => \(K=\frac{a-1}{\sqrt{a}}=\frac{3+2\sqrt{2}-1}{\sqrt{3+2\sqrt{2}}}=\frac{2+2\sqrt{2}}{\sqrt{2+2\sqrt{2}+1}}=\frac{2\left(\sqrt{2}+1\right)}{\sqrt{\left(\sqrt{2}+1\right)^2}}=\frac{2\left(\sqrt{2}+1\right)}{\left(\sqrt{2}+1\right)}\)

=> \(K=2\)

18 tháng 5 2018

2/ Ta có: x3-y3=x-y)(x2+xy+y2)=(x-y)(x2-2xy+y2+3xy)=(x-y)[(x-y)2+3xy]=9

Thay x-y=3 vào ta được: 3(9+3xy)=9

<=> 3+xy=1  => xy=-2

Ta có hệ PT: \(\hept{\begin{cases}x-y=3\\xy=-2\end{cases}}\)=> \(\hept{\begin{cases}x=y+3\\xy=-2\end{cases}}\)

=> y(y+3)+2=0

<=> y2+3y+2=0

<=> y2+y+2y+2=0  <=> y(y+1)+2(y+1)=0  <=> (y+1)(y+2)=0

=> y1=-1  => x1=2

y2=-2 => x2=1

Đáp số: Các cặp x,y là: (2; -1) và (1; -2)

20 tháng 9 2020

a) đk: \(x\ge0;x\ne9\)

Ta có:

\(B=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right]\div\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(B=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+3\right)\sqrt{x}-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\div\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(B=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\div\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(B=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(B=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(B=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}=\frac{3\sqrt{x}-9}{\sqrt{x}+3}\)

b) \(B< -1\Leftrightarrow\frac{3\sqrt{x}-9}{\sqrt{x}+3}+1< 0\)

\(\Leftrightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\) , mà \(\sqrt{x}+3\ge3>0\left(\forall x\right)\)

=> \(4\sqrt{x}-6< 0\)

\(\Leftrightarrow4\sqrt{x}< 6\)

\(\Rightarrow\sqrt{x}< \frac{3}{2}\)

\(\Rightarrow x< \frac{9}{4}\)

Vậy \(0\le x< \frac{9}{4}\)

20 tháng 9 2020

c) Ta có: \(B=\frac{3\sqrt{x}-9}{\sqrt{x}+3}=\frac{3\left(\sqrt{x}+3\right)-18}{\sqrt{x}+3}=3-\frac{18}{\sqrt{x}+3}\)

Vì \(\sqrt{x}+3\ge3\Rightarrow\frac{18}{\sqrt{x}+3}\le6\)

\(\Leftrightarrow3-\frac{18}{\sqrt{x}+3}\ge-3\)

\(\Rightarrow A\ge-3\)

Dấu "=" xảy ra khi: \(\sqrt{x}+3=3\Rightarrow x=0\)

Vậy \(Min_A=-3\Leftrightarrow x=0\)

19 tháng 8 2020

Bài 1 : 

a) \(P=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}}{x-2\sqrt{x}+1}\)

\(P=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

\(P=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}-1}{\sqrt{x}}\)

\(P=\frac{\sqrt{x}+1}{x}\)

b) \(P>\frac{1}{2}\)

\(\Leftrightarrow\frac{\sqrt{x}+1}{x}>\frac{1}{2}\)

\(\Leftrightarrow\frac{\sqrt{x}+1}{x}-\frac{1}{2}>0\)

\(\Leftrightarrow\frac{\sqrt{x}+1-2x}{x}>0\)

\(\Leftrightarrow\sqrt{x}-2x+1>0\left(x>0\right)\)

\(\Leftrightarrow\sqrt{x}+x^2-2x+1-x^2>0\)

\(\Leftrightarrow\sqrt{x}+x^2+\left(x-1\right)^2>0\left(\forall x>0\right)\)

Vậy P > 1/2 với mọi x> 0 ; x khác 1

19 tháng 8 2020

Bài 2 : 

a) \(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+a}+\frac{2}{a-1}\right)\)

\(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}+\frac{2}{a-1}\right)\)

\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1+2\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}\left(a-1\right)\left(\sqrt{a}+1\right)}\)

\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\sqrt{a}\left(a-1\right)\left(\sqrt{a}-1\right)}{a-1+2a+2\sqrt{a}}\)

\(K=\frac{\left(a-1\right)^2}{3a+2\sqrt{a}-1}\)

b) \(a=3+2\sqrt{2}=2+2\sqrt{2}+1=\left(\sqrt{2}+1\right)^2\)( thỏa mãn ĐKXĐ )

Thay a vào biểu thức K , ta có :

\(K=\frac{\left(3+2\sqrt{2}-1\right)^2}{3\left(3+2\sqrt{2}\right)+2\sqrt{\left(\sqrt{2}+1\right)^2}-1}\)

\(K=\frac{\left(2+2\sqrt{2}\right)^2}{9+6\sqrt{2}+2\left|\sqrt{2}+1\right|-1}\)

\(K=\frac{\left(2+2\sqrt{2}\right)^2}{8+6\sqrt{2}+2\sqrt{2}+2}\)

\(K=\frac{\left(2+2\sqrt{2}\right)^2}{10+8\sqrt{2}}\)

23 tháng 8 2017

mik làm bài này

linh tinh

bn ơi

cho mik

xin 1 L-I-K-E

b,  
 
 
 
 

d, 
 
 
 
 
 
 
 
 
 

22 tháng 8 2017

\(\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\)

\(=\frac{2}{\sqrt{5}-2}-\frac{2}{2+\sqrt{5}}\)

 \(=\frac{2\left(\sqrt{5}+2\right)-2\left(\sqrt{5}-2\right)}{5-4}\)

\(=2\sqrt{5}+4-2\sqrt{5}+4\)

\(=8\)

11 tháng 7 2018

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)

16 tháng 6 2016

ĐKXĐ: a > 0

a/ \(K=\left[\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right]:\left[\frac{1}{\sqrt{a}-1}+\frac{2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right]\)

       \(=\left[\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right]:\left[\frac{\sqrt{a}+3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right]\)

        \(=\left[\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}\right].\left[\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}+3}\right]\)  \(=\frac{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}\)

b/ Ta có: \(\sqrt{a}=\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)

     \(K=\frac{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}=\frac{\left(\sqrt{2}+2\right)\sqrt{2}}{\left(\sqrt{2}+1\right)\left(\sqrt{2}+4\right)}=\frac{2\left(\sqrt{2}+1\right)}{\sqrt{2}\left(\sqrt{2}+1\right)\left(2\sqrt{2}+1\right)}\)

            \(=\frac{\sqrt{2}}{2\sqrt{2}+1}\)

c/ \(K< 0\Leftrightarrow\frac{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}< 0\)\(\Rightarrow\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)< 0\)

       \(\Rightarrow\sqrt{a}-1< 0\) (vì \(\left(\sqrt{a}+1\right)^2>0\))    \(\Rightarrow\sqrt{a}< 1\Rightarrow a< 1\)

               Vậy \(0< a< 1\) thì K < 0