Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2.7.13}{26.35}=\frac{2.7.13}{2.13.5.7}=\frac{1}{5}\)
b) \(\frac{23.5-23}{4-27}=\frac{23.\left(5-1\right)}{-23}=\frac{23.4}{-23}=\frac{23.\left(-4\right)}{23}=-4\)
c) \(\frac{2130-15}{3550-25}=\frac{142.15-15}{142.25-25}=\frac{15.\left(142-1\right)}{25.\left(142-1\right)}=\frac{15.141}{25.141}=\frac{15}{25}=\frac{3.5}{5.5}=\frac{3}{5}\)
d) \(\frac{1717-101}{2828+404}=\frac{17.101-101}{28.101+101.4}=\frac{101.\left(17-1\right)}{101.\left(28+4\right)}=\frac{101.16}{101.32}=\frac{16}{32}=\frac{4.4}{2.4.4}=\frac{1}{2}\)
e) \(\frac{3.5.11.13}{33.35.27}=\frac{3.5.11.13}{3.11.5.7.3^3}=\frac{13}{7.3^3}=\frac{13}{189}\)
f) \(\frac{85-17+34}{51-102}=\frac{5.17-17+2.17}{3.17-6.17}=\frac{17.\left(5-1+2\right)}{17.\left(3-6\right)}=\frac{17.6}{17.\left(-3\right)}=\frac{6}{-3}=-2\)
a) \(\frac{2.7.13}{26.35}=\frac{2.7.13}{2.13.7.5}=\frac{1}{5}\)
b) \(\frac{3.5.11.13}{33.35.37}=\frac{3.5.11.13}{3.11.7.5.37}=\frac{13}{259}\)
c) \(\frac{23.5-23}{4-27}=\frac{23.\left(5-1\right)}{-23}=\frac{4}{-1}=-4\)
d) \(\frac{1717-101}{2828+404}=\frac{101.17-101}{404.7+404}=\frac{101.\left(17-1\right)}{404.\left(7+1\right)}=\frac{101.16}{404.8}=\frac{101.2.8}{101.4.8}=\frac{1}{2}\)
Bài toán được giải như sau :
H = 4116-14/10290-35 = 4102/10255 = 2/5
K = 2/3 ( làm như trên nhưng mình làm vậy cho nó nhanh )
L = -4/3
M = -432/17
Oke xong rồi nhé
1/ Ta có: \(\frac{y}{16}=\frac{-1}{4}\)
=> \(y.4=\left(-1\right).16=-16\)
=> \(y=\left(-16\right):4=-4\)
Có: \(\frac{-5}{x}=\frac{y}{16}\)
=> \(x.y=\left(-5\right).16=\left(-80\right)\)
Hay: \(x.\left(-4\right)=-80\)
=> \(x=\left(-80\right):\left(-4\right)=20\)
Vậy: y = -4; x = 20
2/
a. \(\frac{1717-101}{2828+404}=\frac{17.101-101.1}{28.101+4.101}=\frac{101.\left(17-1\right)}{101.\left(28+4\right)}=\frac{101.16}{101.32}=\frac{16}{32}=\frac{1}{2}\)
b. \(\frac{3^5.5^{11}}{5^{12}.3^2}=\frac{3^2.3^3.5^{11}}{5^{11}.5.3^2}=\frac{3^3}{5}=\frac{27}{5}\)
3/ Gọi d là ƯCLN (2n + 1; 3n +1)
Ta có: \(\left\{{}\begin{matrix}2n+1⋮d\\3n+1⋮d\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}6n+3⋮d\\6n+2⋮d\end{matrix}\right.\)
=> (6n + 3) - (6n + 2) ⋮d
=> 6n + 3 - 6n - 2 ⋮d
=> 1⋮d
=> d = 1
Hay: ƯCLN (2n + 1; 3n +1) = 1
=> Phân số \(\frac{2n+1}{3n+1}\) tối giản với mọi n ∈ Z
P/s: Mình giải hết cho bạn rồi đó!
\(H=\frac{4116-14}{10290-35}=\frac{14.294-14}{35.294-35}=\frac{14.\left(294-1\right)}{35.\left(294-1\right)}=\frac{14.293}{35.293}=\frac{2}{5}\)
\(K=\frac{29.101-101}{2.19.101+4.101}=\frac{101.\left(29-1\right)}{101.\left(38+4\right)}=\frac{28}{42}=\frac{2}{3}\)
\(I=\frac{1313-1717}{303}=\frac{13.101-17.101}{3.101}=\frac{101.\left(13-17\right)}{3.101}=\frac{-4}{3}\)
\(M=\frac{12-24.3}{1-35}=\frac{12-12.2.3}{-34}=\frac{12.\left(1-6\right)}{-34}=\frac{-60}{-34}=\frac{30}{17}\)
\(H\)\(=\) \(\frac{4116-14}{10290-35}\)
\(=\) \(\frac{4102}{10255}\)
\(=\) \(\frac{4102:2051}{10255:2051}\)
\(=\) \(\frac{2}{5}\)
\(K=\frac{2929-101}{2.1919+404}\)
\(=\) \(\frac{2828}{4242}\)
\(=\) \(\frac{2828:1414}{4242:1414}\)
\(=\) \(\frac{2}{3}\)
\(M=\frac{12-24.3}{1-35}\)
\(=\) \(\frac{-60}{-34}\)
\(=\) \(\frac{60}{34}\)
\(=\) \(\frac{30}{17}\)
:D