Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{2001}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{2}{2010}+\frac{1}{2001}\)
\(B=\left(2011-1-...-1\right)+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)\)
\(B=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}\)
\(B=2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)
\(\Rightarrow\)\(\frac{B}{A}=\frac{2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}}=2012\)
Vậy \(\frac{B}{A}=2012\)
Chúc bạn học tốt ~
Có B = \(\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+....+\frac{1}{2011}\)
B = \(\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+....+\left(\frac{1}{2011}+1\right)+1\)
B = \(\frac{2012}{2}+\frac{2012}{3}+....+\frac{2012}{2011}+\frac{2012}{2012}\)
B = \(2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)\)
=> \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)}=\frac{1}{2012}\)
\(C=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
\(C=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{2011+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
\(C=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{1+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+....+\left(\frac{1}{2011}+1\right)}\)
\(C=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2012}{2012}+\frac{2012}{2}+\frac{2012}{3}+....+\frac{2012}{2011}}\)
\(C=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)}=\frac{1}{2012}\)
Đặt: \(L=\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}\)
\(L=1+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)\)
\(L=\frac{2012}{2012}+\frac{2012}{2}+\frac{2012}{3}+..+\frac{2012}{2011}\)
\(L=2012\left(\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2011}+\frac{1}{2012}\right)\)
Hay: \(P=\frac{1}{2012}\)
Ta có :
\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2012}}{1+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+....+\left(\frac{1}{2011}+1\right)}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2012}}{\frac{2012}{2}+\frac{2012}{3}+....+\frac{2012}{2011}+\frac{2012}{2012}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2012}}{2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2012}\right)}\)
\(\frac{1}{2012}\)
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\left(\frac{2011}{1}+1\right)+\left(\frac{2010}{2}+1\right)+...+\left(\frac{1}{2011}+1\right)+1}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2012}{1}+\frac{2012}{2}+...+\frac{2012}{2011}+\frac{2012}{2012}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)}\)
\(=\frac{1}{2012}\)
\(B=\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+....+\frac{1}{2011}\)
\(=\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+....\left(\frac{1}{2011}+1\right)+1\)
\(=\frac{2012}{2}+\frac{2012}{3}+\frac{2012}{4}+.....+\frac{2012}{2011}+\frac{2012}{2012}\)
\(=2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2012}\right)\)
Thay vào,rút gọn là ra