K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2016

2B=52+...+5101

2B-B=B=(52+...+5101)-(5+...+5100)

= 5101-5

28 tháng 5 2016

A mình k nhầm cho we are one Nguyễn Ngọc Sáng

PHẢI LÀ 5B CHỨ SAI MẤT RÙI

5 tháng 10 2015

B= 311+312+313+...+3101

=>3B= 312+313+314+...+3101

=>3B-B= 312+313+314+...+3101-311 -312-313-...-3101

=>2B=3101-311

=>B= 2101-311 :2

19 tháng 10 2016

a, \(S=1+3+3^2+3^3+....+3^{100}\)

=> \(3S=3+3^2+3^3+3^4+....+3^{101}\)

=> \(2S=3S-S=3^{101}-1\)

=> \(S=\frac{3^{101}-1}{2}\)

b, \(S=1+3+3^2+3^3+....+3^{100}\)
Tổng S có 101 số hạng. Nhóm 4 số vào 1 nhóm, ta đc 25 nhóm và thừa 1 số hạng

=> \(S=1+\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(S=1+3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{97}\left(1+3+3^2+3^3\right)\)

\(S=1+3.40+3^5.40+...+3^{97}.40\)

\(S=1+40\left(3+3^5+...+3^{97}\right)\)

Có \(40\left(3+3^5+...+3^{97}\right)\)chia hết cho 5 (vì 40 chia hết cho 5)

1 chia 5 dư 1

=> \(S=1+40\left(3+3^5+...+3^{97}\right)\)chia 5 dư 1

=> S không chia hết cho 5 (Đpcm)

13 tháng 7 2016

A=-2/3

B=1

24 tháng 7 2017

\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)

\(2A=2+2^2+2^3+...+2^{51}\)

\(2A-A=A=2^{51}-2^0\)

\(B=5+5^2+5^3+...+5^{99}+5^{100}\)

\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)

\(5B-B=4B=5^{101}-5\)

\(B=\frac{5^{101}-5}{4}\)

\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)

\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)

\(3C+C=4C=3^{2011}+3\)

\(C=\frac{3^{2011}+3}{4}\)

\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)

\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)

\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)

\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)

\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)

24 tháng 10 2023

A=20+21+22+23+...++23+...+250250

2�=2+22+23+...+2512A=2+22+23+...+251

2�−�=�=251−202AA=A=25120

�=5+52+53+...+599+5100B=5+52+53+...+599+5100

5�=52+53+54+...+5100+51015B=52+53+54+...+5100+5101

5�−�=4�=5101−55BB=4B=51015

�=5101−54B=451015

�=3−32+33−34+...+C=332+3334+...+32007−32008+32009−320103200732008+3200932010

3�=32−33+34−35+...−32008+32009−32010+320113C=3233+3435+...32008+3200932010+32011

3�+�=4�=32011+33C+C=4C=32011+3

�=32011+34C=432011+3

�100=5+5×9+5×92+5×93+...+5×999S100=5+5×9+5×92+5×93+...+5×999

�100=5×(1+9+92+93+...+999)S100=5×(1+9+92+93+...+999)

9�100=5×(9+92+93+...+999+9100)9S100=5×(9+92+93+...+999+9100)

9�100−�100=8�100=5×(9100−1)9S100S100=8S100=5×(91001)

�100=5×(9100−1)8S100=85×(91001)

2 tháng 10 2016

a, \(M=5+5^2+5^3+...+5^{100}\)

\(\Rightarrow5M=5^2+5^3+5^4+...+5^{101}\)

\(\Rightarrow5M-M=\left(5^2+5^3+5^4+...+5^{101}\right)-\left(5+5^2+5^3+....+5^{100}\right)\)

\(\Rightarrow4M=5^{101}-5\)

\(\Rightarrow M=\frac{5^{101}-5}{4}\)

Vậy : \(M=\frac{5^{101}-5}{4}\)

2 tháng 10 2016

bằng ?

 

2 tháng 10 2016

a) \(M=5+5^2+5^3+...+5^{100}\)

=> \(5M=\left(5+5^2+5^3+...+5^{100}\right).5\)

            = \(5^2+5^3+5^4+...+5^{101}\)

=> \(5M-M=\left(5^2+5^3+5^4+...+5^{101}\right)-\left(5+5^2+5^3+...+5^{100}\right)\)

=> \(4M=5^{101}-5\)

=> \(M=\frac{5^{101}-5}{4}\)

 

11 tháng 2 2019

J=6 + 16 + 30 + 48 +...+ 19600 + 19998

Chia cả 2 vế cho 2 ta được

B/2 = 3 + 8 + 15 + 24 +  ......... + 98000+ 9999

B/2= 1x3+2x4+3x5+4x6+…….+98x100+99x101

B/2= 100/6[(100-1)x(2x100+1)] = 328350

-> B =328350x2=656700

K=2 + 5 + 9 + 14 + ....+ 4949 + 5049

Nhân cả 2 vế với 2 ta được

2xD=1x4+    2x5+ 3x6+   4x7+……..+98x101+99x102

2xD = 1(2+2)+2(3+2)+3(4+2)+...+99(100+2)

2xD = 1x2+1x2+2x3+2x2+3x4+3x2+...+99x100+99x2

2xD= (1x2+2x3+3x4+...+99x100)+2(1+2+3+...+99)

2xD =           333300       +                      9900        =      343200

 -> D= 343200 :2 =171600

3 tháng 7 2018

\(3A=3^1+3^2+3^3+...+3^{101}\Rightarrow3A-A=\left(3^1+3^2+...+3^{101}\right)-\left(3^0+3^1+...+3^{100}\right)\)

\(\Leftrightarrow2A=3^{101}-3^0=3^{101}-1\Rightarrow A=\frac{3^{101}-1}{2}\)

4 tháng 7 2018

\(B=1-5+5^2-5^3+.............+5^{98}-5^{99}\)

\(5B=5-5^2+5^3-5^4+...................+5^{99}-5^{100}\)

\(5B+B=5^{100}+1\Rightarrow6B=5^{100}+1\Rightarrow B=\frac{5^{100}+1}{6}\)