Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
Câu đầu bạn xem lại.
\(\left(3x+4\right)^2+\left(4x-3\right)^2+\left(2+5x\right).\left(2-5x\right)\)
\(=\left(3x\right)^2+2.2x.4+4^2+\left(4x\right)^2-2.4x.3+3^2+2^2-\left(5x\right)^2\)
\(=9x^2+24x+16+16x^2-24x+9+4-25x^2\)
\(=\left(9x^2+16x^2-25x^2\right)+\left(24x-24x\right)+\left(16+9+4\right)\)
\(=29\)
\(\left(5x+y\right).\left(25x^2-5xy+y^2\right)-\left(5x-y\right).\left(25x^2+5xy+y^2\right)\)
\(=\left(5x+y\right).[\left(5x\right)^2-5x.y+y^2]-\left(5x-y\right).[\left(5x\right)^2+5x.y+y^2]\)
\(=\left(5x\right)^3+y^3-[\left(5x\right)^3-y^3]\)
\(=\left(5x\right)^3+y^3-\left(5x\right)^3+y^3\)
\(=2y^3\)
@Vũ Khánh Ly Tớ không nói bạn sai hay là sao nhưng tại hơi khó nhìn sợ bạn đọc không biết nên tớ đăng bài này.
Lưu ý: Cách này cũng hơi thông thường nên tớ sẽ cố gắng nghĩ. Nếu ra tớ sẽ post lên
Tớ làm tiếp ko viết lại đề nha~
\(=27x^3+27x^2y+9xy^2+y^2-\left(5x-y\right)\left(5x+y\right)^2+x^3+6x^2y+12xy^2+8y^3\)\(=28x^3+33x^2y+21xy^2+9y^3-\left(25x^2-y^2\right)\left(5x+y\right)\)(1)
Ta có: \(\left(25x^2-y^2\right)\left(5x+y\right)=125x^3+25x^2y-5xy^2-y^3\)
Thay vào ta có: \(\left(1\right)=28x^3+33x^2y+21xy^2+9y^3-125x^3-25x^2y+5xy^2+y^3\)\(=-97x^3+8x^2y+26xy^2+10y^3\)
Bài 1:
a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)
\(=10-10x=10(1-x)\)
b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)
\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)
\(=-7x^2+7x=7x(1-x)\)
c)
\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)
\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)
\(=\left\{3-x-5[9x-2]\right\}(-2x)\)
\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)
Bài 2:
a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)
\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)
\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)
b)
\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)
\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)
\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)
\(2x^2+3(x^2-1)=5x(x+1)\)
\(3x^4-4x^3+2x\left(x^3-2x^2+7x\right)\)
\(=3x^4-4x^3+2x^4-4x^3+14x^2\)
\(=5x^4-8x^3+14x^2\)
3x4 - 4x3 + 2x(x3 - 2x2 + 7x )
= 3x4 - 4x3 + 2x4 _ 4x3 + 14x2
= 5x4 - 8x3 + 14x2
a) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+24\)
\(=24-11x\)
b) \(\left(4x^2-3y\right)\cdot2y-\left(3x^2-4y\right)\cdot3y\)
\(=8x^2y-6y^2-9x^2y+12y^2\)
\(=6y^2-x^2y\)
c) \(3y^2\left[\left(2x-1\right)+y+1\right]-y\left(1-y-y^2\right)+y\)
\(=3y^2\cdot\left(2x-1+y+1\right)-y\cdot\left(1-y-y^2\right)+y\)
\(=6xy^2-3y^2+3y^3+3y^2-y+y^2+y^3+y\)
\(=4y^3+y^2+6xy^2\)
\(A=x^2-4x-x\left(x-4\right)-15\)
\(=x^2-4x-x^2+4x-15=-15\) => đpcm
\(B=5x\left(x^2-x\right)-x^2\left(5x-5\right)-13\)
\(=5x^3-5x^2-5x^3+5x^2-13=-13\) => đpcm
\(C=-3x\left(x-5\right)+3\left(x^2-4x\right)-3x+7\)
\(=-3x^2+15x+3x^2-12x-3x+7=7\) => đpcm
\(D=7\left(x^2-5x+3\right)-x\left(7x-35\right)-14\)
\(=7x^2-35x+21-7x^2+35x-14=7\) => đpcm
\(E=4x\left(x^2-7+2\right)-4\left(x^3-7x+2x-5\right)\)
\(=4x^3-20x-4x^3+20x+20=20\) => đpcm
\(H=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(=5x^2-3x-x^3+x^2+x^3-6x^2-10x+3x=-10\) => đpcm
a: \(=49x^2-64-10\left(4x^2+12x+9\right)+5x\left(9x^2-12x+4\right)+4x\left(x^2-10x+25\right)\)
\(=49x^2-64-40x^2-120x-90+45x^3-60x^2+20x+4x^3-40x^2+100x\)
\(=49x^3-91x^2-154\)
b: \(=27x^3+189x^2+441x+343-125x^3+y^3+x^3+6x^2y+12xy^2+8y^3\)
\(=-97x^3+189x^2+441x+6x^2y+12xy^2+9y^3+343\)