\(A=\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2}+\sqrt{3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2019

      ĐK :\(\hept{\begin{cases}x>=0\\x\ne1\end{cases}}\)

Ta có: \(A=\left[\frac{1}{\sqrt{x}+1}-\frac{2\left(x-1\right)}{\sqrt{x}\left(x-1\right)+x-1}\right]:\left[\frac{\sqrt{x}+1}{x-1}-\frac{2}{x-1}\right]\)

          

23 tháng 10 2020

\(A=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

ĐK : \(\hept{\begin{cases}x,y>0\\x\ne y\end{cases}}\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\frac{x+2\sqrt{xy}+y}{x-y}-\frac{x-2\sqrt{xy}+y}{x-y}\)

\(=\frac{x+2\sqrt{xy}+y-x+2\sqrt{xy}-y}{x-y}=\frac{4\sqrt{xy}}{x-y}\)

Với \(\hept{\begin{cases}x=7+2\sqrt{3}\\y=7-2\sqrt{3}\end{cases}}\)( tmđk )

=> \(A=\frac{4\sqrt{\left(7+2\sqrt{3}\right)\left(7-2\sqrt{3}\right)}}{7+2\sqrt{3}-\left(7-2\sqrt{3}\right)}\)

\(=\frac{4\sqrt{7^2-\left(2\sqrt{3}\right)^2}}{7+2\sqrt{3}-7+2\sqrt{3}}\)

\(=\frac{4\sqrt{49-12}}{4\sqrt{3}}\)

\(=\frac{4\sqrt{37}}{4\sqrt{3}}=\frac{\sqrt{37}}{\sqrt{3}}=\frac{\sqrt{37}\cdot\sqrt{3}}{\sqrt{3}\cdot\sqrt{3}}=\frac{\sqrt{111}}{3}\)

10 tháng 2 2019

cho S=1-3+32-33+...+398-399                                                                                                                                       

a. Chứng minh: S chia hêt cho 20

b. Rút gọn S, từ đó suy ra 3100 chia 4 dư 1

chịu