\(A=\frac{1+\sqrt{5}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}+\frac{1-\sqrt{5}}{\sqrt{2}-\sqr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2017

bạn quy đồng nha,,nhóm cái căn3 + căn 5 thành 1 nhóm,,,rồi quy đồng \(\sqrt{2}-\left(\sqrt{3}+\sqrt{5}\right)\)

26 tháng 9 2017

ko sao đâu

3 tháng 10 2020

a) Ta có: \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)

\(=\left(-\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)

\(=-2+2\sqrt{5}-\sqrt{5}\)

\(=-2+\sqrt{5}\)

3 tháng 10 2020

b) \(\left(\frac{1}{2}\sqrt{\frac{1}{2}}-\frac{3}{2}\sqrt{2}+\frac{4}{5}\sqrt{200}\right)\div\frac{1}{8}\)

\(=\left(\frac{\sqrt{2}}{4}-\frac{3\sqrt{2}}{2}+8\sqrt{2}\right)\cdot8\)

\(=\frac{27\sqrt{2}}{4}\cdot8\)

\(=54\sqrt{2}\)

16 tháng 7 2019

\(A=\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}\)

\(=\frac{\sqrt{3}-1}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}+\frac{\sqrt{3}+1}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)

\(=\frac{\sqrt{3}-1+\sqrt{3}+1}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\sqrt{3}}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\sqrt{3}}{3-1}\)

\(=\frac{2\sqrt{3}}{2}\)

\(=\sqrt{3}\)

\(B=\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\)

\(=\frac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}\left(\sqrt{5}-1\right)}+\frac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}\left(\sqrt{5}+1\right)}\)

\(=\frac{\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right)}+\frac{\left(\sqrt{5}-1\right)}{\left(\sqrt{5}+1\right)}\)

\(=\frac{\left(\sqrt{5}+1\right)^2}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}+\frac{\left(\sqrt{5}-1\right)^2}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)

\(=\frac{5+2\sqrt{5}+1+5-2\sqrt{5}+1}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}\)

\(=\frac{12}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}\)

\(=\frac{12}{5-1}\)

\(=\frac{12}{4}\)

\(=3\)