![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt d=a+b+c ta được:
(a+b+c)2+(a-b+c)2+(a+b-c)2+(b+c-a)2
=d2+(d-2b)2+(d-2c)2+(d-2a)2
=d2+d2-4bx+4b2+d2-4cx+4c2+d2-4ax-4a2
=4d2-4bx-4cx-4ax+4b2+4c2+4a2
=4.(d2-bx-cx-ax+b2+c2+a2)
=4.[(a+b+c)2-b.(a+b+c)-c(a+b+c)-a(a+b+c)+b2+c2+a2]
=4.(a2+b2+c2+2ab+2ac+2bc-ab-b2-bc-ac-bc-c2-a2-ab-ac+b2+c2+a2)
=4.(a2+b2+c2)
![](https://rs.olm.vn/images/avt/0.png?1311)
= \(a^2+b^2+c^2+2ab+2bc+2ac+b^2+c^2+a^2+2bc-2ab-2ac+a^2+b^2\)
\(+c^2+2ac-2bc-2ab+a^2+b^2+c^2+2ab-2bc-2ac\)
\(=4a^2+4b^2+4c^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
bn áp dụng \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ac+2ab+2bc\)
và \(a^2-b^2=\left(a+b\right)\left(a+c\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a , áp dụng a2 - b2 = ( a +b) ( a - b ) ta được
( a2 + b 2 - c2 + a 2 - b 2 + c2 ) ( a2 + b 2 - c2 - a2 + b2 - c2 )
= 2 a2 ( 2b2- 2c2) = 4a2b2- 4a2c2
b , ( a + b + c )2 + ( a + b -c ) 2 - 2 ( a +b )2
= ( a + b )2 + 2c ( a + b ) + c 2 + ( a +b )2 - 2c ( a +b ) + c2 - 2 ( a + b )2 = 2c2
c, ((a + b ) +c )2 + ( ( a - b ) +c )2 + ( ( a +b) -c )2 + ( c - ( a +b ))
= ( a + b )2 +2c ( a + b ) + c2 ( a - b ) 2 + 2c ( a-b ) + c 2 + ( a +b) 2 - 2c ( a + b ) + c 2 + c 2 - 2c ( a - b ) + ( a -b )2
= 2 ( a + b )2 + 2 ( a -b )2 + 4c 2
= 2 ( a2 + 2ab + b2 ) + 2 ( a2 - 2ab + b2 ) + 4c2
= 4 ( a2 + b2 + c2 )
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
đặt a - b-c=x; b-c-a=y; c-a-b=z
=> a + b + c = ...
Thay vào ròi lm tiếp nha
Bài làm:
Đặt \(\hept{\begin{cases}a-b-c=x\\b-c-a=y\\c-a-b=z\end{cases}}\)=> \(a+b+c=-\left(x+y+z\right)\)
Thay vào:
Bt = \(x^2+y^2+z^2-\left(x+y+z\right)^2\)
\(=x^2+y^2+z^2-x^2-y^2-z^2-2\left(xy+yz+zx\right)\)
\(=-2\left(xy+yz+zx\right)\)
Xét: \(xy=\left(a-b-c\right)\left(b-c-a\right)=\left(b+c-a\right)\left(c+a-b\right)\)
\(=\left[c-\left(a-b\right)\right]\left[c+\left(a-b\right)\right]\)
\(=c^2-\left(a-b\right)^2\)
\(=c^2-a^2+2ab-b^2\)
Tương tự: \(yz=a^2-b^2+2bc-c^2\) ; \(zx=b^2-c^2+2ca-a^2\)
=> \(-2\left(xy+yz+zx\right)=2\left(a^2+b^2+c^2-2ab-2bc-2ca\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)= \(a^2+b^2+c^2-2ab-2bc+2ac-\left(b^2-2bc+c^2\right)-2ab-2ac\)
=\(a^2+b^2+c^2-2ab-2bc+2ac-b^2+2bc-c^2-2ab-2ac\)
=\(a^2-4ab\)