Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\frac{2}{a}.\frac{4\left|a\right|}{3}=\frac{-8a}{3a}=-\frac{8}{3}\)
b/ \(\frac{3}{a-1}\sqrt{\frac{4\left(a-1\right)^2}{25}}=\frac{3}{\left(a-1\right)}.\frac{2\left|a-1\right|}{5}=\frac{6\left(a-1\right)}{5\left(a-1\right)}=\frac{6}{5}\)
c/ \(\frac{3\sqrt{9a^2b^4}}{\sqrt{a^2b^2}}=\frac{9.\left|a\right|.b^2}{\left|a\right|\left|b\right|}=9\left|b\right|\)
d/ \(\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)
a/ \(=\frac{2}{a}.\frac{4\left|a\right|}{3}=\frac{2}{a}.\frac{-4a}{3}=\frac{-8}{3}\)
b/ \(=\frac{3}{a-1}.\frac{\left|2a-2\right|}{5}=\frac{3}{a-1}.\frac{2\left(a-1\right)}{5}=\frac{6}{5}\)
c/ \(=\sqrt{\frac{162a^2b^4}{2a^2b^2}}=\sqrt{81b^2}=9\left|b\right|\)
d/ \(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)
1/ a/ \(\sqrt{0,9.0,16.0,4}=\sqrt{\frac{9.16.4}{10000}}=\sqrt{\frac{\left(3.4.2\right)^2}{10^4}}=\frac{24}{1010}=\frac{6}{25}\)
b/ \(\sqrt{0,0016}=\sqrt{\frac{16}{100}}=\frac{4}{10}=\frac{2}{5}\)
c/ \(\frac{\sqrt{72}}{\sqrt{2}}=\frac{\sqrt{2}.\sqrt{36}}{\sqrt{2}}=\sqrt{36}=6\)
d/ \(\frac{\sqrt{2}}{\sqrt{288}}=\frac{\sqrt{2}}{\sqrt{2}.\sqrt{144}}=\frac{1}{\sqrt{144}}=\frac{1}{12}\)
2.
a/ \(\frac{2}{a}.\sqrt{\frac{16a^2}{9}}=\frac{2}{a}.\frac{4\left|a\right|}{3}=-\frac{8a}{3a}=-\frac{8}{3}\) (Vì a<0)
b/ \(\frac{3}{a-1}.\sqrt{\frac{4a^2-8a+4}{25}}=\frac{3}{a-1}.\sqrt{\frac{4\left(a-1\right)^2}{25}}=\frac{3.2\left|a-1\right|}{5.\left(a-1\right)}=\frac{6\left(a-1\right)}{5\left(a-1\right)}=\frac{6}{5}\)
c/ \(\frac{\sqrt{243a}}{\sqrt{3a}}=\frac{9\sqrt{3a}}{\sqrt{3a}}=9\)
d/ \(\frac{3\sqrt{18a^2b^4}}{\sqrt{2a^2b^2}}=\frac{3.3\sqrt{2}.\left|a\right|.\left|b\right|^2}{\sqrt{2}.\left|a\right|.\left|b\right|}=9\left|b\right|\)
a)
\(\sqrt{\left(3-a\right)^2\cdot a^4}\\ =\sqrt{\left(3-a\right)^2\cdot\left(a^2\right)^2}\\ =\left|3-a\right|a^2\\ =\left[{}\begin{matrix}\left(3-a\right)a^2\\\left(a-3\right)a^2\end{matrix}\right.\left(vìa\ge3\right)\\ \)
b)
\(\sqrt{27\cdot48\cdot\left(1-a\right)^2}\\ =\sqrt{81\cdot16\cdot\left(1-a\right)^2}\\ =9\cdot4\cdot\left|1-a\right|\\ =36\left(a-1\right)\left(vìa>1\right)\)
c) Sao lại cả a và x ở đây vậy !?
d) Lại a và x =.=
3.
\(5a^2+2ab+2b^2=\left(a^2-2ab+b^2\right)+\left(4a^2+4ab+b^2\right)\)
\(=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)
Tương tự \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c};\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\)
\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)
\(\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)
\(=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}.\sqrt{3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}=\frac{\sqrt{3}}{3}\)
\(\Rightarrow MaxP=\frac{\sqrt{3}}{3}\Leftrightarrow a=b=c=\sqrt{3}\)
a) \(\frac{2}{x^2-y^2}\cdot\sqrt{\frac{3\left(x+y\right)^2}{2}}=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\frac{\sqrt{3}\left(x+y\right)}{\sqrt{2}}=\frac{\sqrt{6}}{x-y}\)
b) \(\frac{2}{2a-1}\cdot\sqrt{5a^2\left(1-4a+4a^2\right)}=\frac{2}{2a-1}\cdot\sqrt{5a^2\left(1-2a\right)^2}\)
\(=\frac{2}{2a-1}\cdot\sqrt{5}a\left(1-2a\right)=-2\sqrt{5}a\)
a) \(\sqrt{\frac{2a^2b^4}{50}}=\sqrt{\frac{a^2b^4}{25}}=\frac{\sqrt{a^2b^4}}{\sqrt{25}}=\frac{ab^2}{5}\)
b) \(\frac{\sqrt{2ab^2}}{\sqrt{162}}=\sqrt{\frac{2ab^2}{162}}=\sqrt{\frac{ab^2}{81}}=\frac{\sqrt{ab^2}}{\sqrt{81}}=\frac{b\sqrt{a}}{9}\)