K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2018

nhanh nhanh mk cần gấp

19 tháng 8 2018

Vì số đầu tiên là 1 và khoảng cách cũng là 1

=> Số số hạng là số cuối cùng hay số số hạng là n

Tổng là :

\(\left(n+1\right)\cdot n\div2\)

\(=\frac{n^2+n}{2}\)

Vậy,.........

30 tháng 12 2018

1)

Để n + 2 \(⋮\)(n - 3)

=> (n-3) + 5 \(⋮\)(n - 3)

=> 5 \(⋮\)(n - 3)

=> (n - 3) \(\in\)Ư(5)={1; -1; 5; -5}

=> n \(\in\){4; 2; 8; -2}

Vậy...

30 tháng 12 2018

\(n+2⋮n-3\)

\(\Leftrightarrow n-3+5⋮n-3\)

\(\Leftrightarrow5⋮n-3\)

Ta có bảng

n - 3                -5                 -1                 1                  5              
n-2248

Vậy ..........

Bài 2,a,\(A=\left(-a-b+c\right)-\left(-a-b-c\right)\)

             \(=-a-b+c+a+b+c\)

              \(=2c\)

b, khi a = 1 ,b = - 1 , c = - 2 thì A = 2 . (-2) = -4

28 tháng 3 2019

câu 1a hình như sai bạn ạ

mình thử lấy n=5 thì n+1/n-3 bằng 6/2 (ko tối giản)

15 tháng 10 2020

Giả sử \(1!+2!+3!+4!+...+n!=x^2\left(x\in N\right)\)(*)

Xét  \(n=1\)khi đó \(VT\)(*)=1 là số chính phương

Xét  \(n=2\)khi đó \(VT\)(*)=5 không là số chính phương

Xét \(n=3\)khi đó \(VT\)(*)=9 là số chính phương

Xét \(n=4\) khi đó \(VT\)(*)=33 không là số chính phương

Xét \(n\ge5\)khi đó \(VT\)(*)=\(33+5!+6!+...+n!\), ta nhận thấy \(5!+6!+...+n!⋮5\)

\(\Rightarrow33+5!+6!+...+n!\)chia \(5\)dư \(3\)

Mà vế phâi (*) \(x^2\)là số chính phương nên chia cho 5 chỉ dư 0 hoặc 1 hoặc 4, không thể bằng vế trái.

Tổng hợp tất cả các trường hợp trên ta được \(n=1\)hoặc \(n=3\)

7 tháng 7 2015

Mình làm vd 2 bài nha:

a) n+6 chia hết cho n+2

n+2 chia hết cho n+2

nên (n+6)-(n+2) chia hết cho n+2

4 chia hết cho n-2

=> n-2 = 1;-1;2;-2;4;-4

=> n=3;1;4;0;6

d) n^2 +4 chia hết cho 4

n+1 chia hết cho n+1 nên (n+1)(n+1) chia hết cho n+1 hay n2+2n+1 chia hết cho n+1

=> (n^2+2n+1)-(n^2+4) chia hết cho n-1

=> 2n+1-4 chia hết cho n-1

=> 2n - 3 chia hết cho n-1

 n-1 chia hết cho n-1 nên 2n-2 chia hết cho n-1

=> (2n-2)-(2n-3) chia hết cho n-1

=> 1 chia hết cho n-1

=> n-1 = 1;-1

=> n=0

7 tháng 7 2015

Ta có: n + 6 chia hết cho n+1

              n+1 chia hết cho n+1

=> [(n+6) - (n+1)] chia hết cho n+1

=> (n+6 - n - 1) chia hết cho n + 1

=> 5 chia hết cho n+1

=> n+1 thuộc { 1; 5 }

Nếu n+1 = 1 thì n = 1-1=0

Nếu n+1=5 thì n= 5-1=4.

Vậy n thuộc {0;4}

5 tháng 5 2020

Làm mẫu câu a  bài 1. vì các câu còn lại tương tự

n+7 chia hết cho n-5

\(\Rightarrow\left(n+7\right)-\left(n-5\right)⋮n-5\)

\(\Rightarrow12⋮n-5\)

\(\Rightarrow n-5\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

ta có bảng :

n-51-12-23-34-46-612-12
n6473829111-117-7

vậy \(n\in\left\{6;4;7;3;8;2;9;1;11;-1;17;-7\right\}\)

2. làm mẫu câu a:

(2a+3)(b-3)=-12

=>(2a+3);(b-3)\(\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

TH1:

2a+3=1                                 ;b-3=-12

2a=-2                                     =>b=-9

=>a=-1

sau đó em ghép siêu  nhiều trường hợp  còn lại . 

có 12TH tất cả em nhé  .

21 tháng 6 2020

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

25 tháng 5 2020

a) \(1.2+2.3+...+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)(@@)

+) Với n = 1 ta có: \(1.2=\frac{1.\left(1+1\right)\left(1+2\right)}{3}\) đúng

=> (@@) đúng với n = 1 

+) G/s (@@) đúng cho đến n 

+) Ta chứng minh (@@ ) đúng với n + 1 

Ta có: \(1.2+2.3+...+n\left(n+1\right)+\left(n+1\right)\left(n+2\right)\)

\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}+\left(n+1\right)\left(n+2\right)\)

\(=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)}{3}\)

=>  (@@) đúng với n + 1

Vậy (@@ ) đúng với mọi số tự nhiên n khác 0

26 tháng 5 2020

b) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}=\frac{2^n-1}{2^n}\) (@)

Ta chứng minh (@) đúng  với n là số tự nhiên khác 0 quy nạp theo n 

+) Với n = 1 ta có: \(\frac{1}{2}=\frac{2^1-1}{2^1}\) đúng 

=> (@) đúng với n = 1 

+) G/s (@) đúng cho đến n 

+) Ta cần chứng minh (@) đúng với n + 1 

Ta có: \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}+\frac{1}{2^{n+1}}=\frac{2^n-1}{2^n}+\frac{1}{2^{n+1}}=\frac{2^{n+1}-2+1}{2^{n+1}}=\frac{2^{n+1}-1}{2^{n+1}}\)

=> (@) đúng với n + 1 

Vậy (@) đúng với mọi số tự nhiên n khác 0.