Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho S=1-3+32-33+...+398-399
a. Chứng minh: S chia hêt cho 20
b. Rút gọn S, từ đó suy ra 3100 chia 4 dư 1
chịu
a) ĐK: a>0, a khác 1, a khác 1/4
P=\(1+\left(2+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{a\sqrt{a}}-\frac{2\sqrt{a}-1}{\sqrt{a}-1}\right).\frac{\sqrt{a}-1}{2\sqrt{a}-1}=1+\left(\frac{\left(2a+\sqrt{a}-1\right)\left(\sqrt{a}-1\right)}{a\left(\sqrt{a}-1\right)}-\frac{\left(2\sqrt{a}-1\right)a}{a\left(\sqrt{a}-1\right)}\right).\frac{\sqrt{a}-1}{2\sqrt{a}-1}\)
\(P=\frac{2a\sqrt{a}-a-2\sqrt{a}+1-2a\sqrt{a}+a}{a\left(\sqrt{a}-1\right)}.\frac{\sqrt{a}-1}{2\sqrt{a}-1}=\frac{-\left(2\sqrt{a}-1\right)}{a\left(2\sqrt{a}-1\right)}=-\frac{1}{a}\)
b)
ta có: a>0 => -1/a<0 ; 2/3>0 => Pkhông thể > 2/3 đc. bạn xem lại đề rồi có gì liên hệ vs mình nha.
nhớ L IK E
Bài 1 :
\(6xy\cdot\sqrt{\frac{9x^2}{16y^2}}=6xy\cdot\frac{3x}{4y}=\frac{18x^2y}{4y}=\frac{9}{2}x^2\)
\(\sqrt{\frac{4+20a+25a^2}{b^4}}=\sqrt{\frac{\left(2+5a\right)^2}{\left(b^2\right)^2}}=\frac{2+5a}{b^2}\)
\(\left(m-n\right).\sqrt{\frac{m-n}{\left(m-n\right)^2}}=\sqrt{\left(m-n\right)^2}\cdot\sqrt{\frac{1}{m-n}}=\sqrt{\frac{\left(m-n\right)^2}{m-n}}=\sqrt{m-n}\)
Bài 2 :
1. \(\left(2\sqrt{3}-\sqrt{12}\right):5\sqrt{3}=\left(2\sqrt{3}-2\sqrt{3}\right):5\sqrt{3}=0:5\sqrt{3}=0\)
2. \(\sqrt{\frac{317^2-302^2}{1013^2-1012^2}}=\frac{\sqrt{\left(317+302\right)\left(317-302\right)}}{\sqrt{\left(1013+1012\right)\left(1013-1012\right)}}=\frac{\sqrt{619}\cdot\sqrt{15}}{\sqrt{2025}}=\sqrt{\frac{619}{135}}\)(check lại)
3. \(\sqrt{27\left(1-\sqrt{3}\right)^2}:3\sqrt{75}\)
\(=\sqrt{27}\left(1-\sqrt{3}\right):15\sqrt{3}\)
\(=3\sqrt{3}\left(1-\sqrt{3}\right):15\sqrt{3}\)
\(=\frac{1-\sqrt{3}}{5}\)
4.\(\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}}+\sqrt{5}\right):2\sqrt{5}\)
\(=\left(\frac{5}{\sqrt{5}}+\frac{\sqrt{20}}{2}-\frac{\frac{5}{4}\cdot2}{\sqrt{5}}+\sqrt{5}\right):2\sqrt{5}\)
\(=\left(\sqrt{5}+\frac{2\sqrt{5}}{2}-\frac{\frac{5}{2}}{\sqrt{5}}+\sqrt{5}\right):2\sqrt{5}\)
\(=\left(\sqrt{5}+\sqrt{5}+\frac{\sqrt{5}}{2}+\sqrt{5}\right):2\sqrt{5}\)
\(=\frac{7}{2}\sqrt{5}:2\sqrt{5}\)
\(=\frac{7}{4}\)
rút gọn dk \(\sqrt{a+1}+\sqrt{a-1}+\sqrt{a\left(a+1\right)}\)
ta có \(\frac{53}{9-2\sqrt{7}}=9+\sqrt{7}\)( cứ lm bt theo cách trục căn thức)
rồi thay vào