Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)-\left(x-2\right)\left(x+2\right)\)
\(=\left(x-1\right)-\left(x^2-2^2\right)\)
\(=\left(x-1\right)-x^2+2^2\)
\(=x-1-x^2+2^2\)
\(=x-x^2+\left(2-1\right)\left(2+1\right)\)
\(=x-x^2+3\)
a/ (x-1)2-(x-2)(x+2)
=(x-1)-(x2-22)
=(x-1)-x2-22
=x-x2 +(2-1)(2+1)
=x-x2+3
a/ ĐKXĐ ....
A=\(\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
=\(\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+...+\frac{1}{x-5}-\frac{1}{x-4}\)
=\(\frac{1}{x}-\frac{1}{x-5}\)
=\(-\frac{5}{x^2-5x}\)
b/ \(x^3-x+2=0\Leftrightarrow\left(x+1\right)\left(\left(x-1\right)^2+1\right)=0\)
<=> x=-1, thay vào tính nốt
\(\left(x^2+\frac{1}{x}+\frac{1}{9}\right)\left(x-\frac{1}{3}\right)-\left(x-\frac{1}{3}\right)^3\)
\(=\left[x^3-\left(\frac{1}{3}\right)^3\right]-\left(x-\frac{1}{3}\right)^3\)
\(=\left(x-\frac{1}{3}\right)^3-\left(x-\frac{1}{3}\right)^3\)
\(=\left(x-\frac{1}{3}\right)\left[x^2+\frac{1}{x}+\frac{1}{9}-\left(x-\frac{1}{3}\right)^2\right]\)
\(=\left(x-\frac{1}{3}\right)\left(\frac{1}{x}+\frac{2x}{3}\right)\)
\(=\frac{3x-1}{3}\times\frac{3+2x^2}{3x}\)
\(=\frac{9x+6x^2-3-2x^2}{9x}\)
\(=\frac{4x^2+9x-3}{9x}\)
Mạn phép bỏ câu a :))
b) a2(b2 - a2) + b2(b2 + a2)
= a2.b2 + a2.(-a2) + b2.b2 + b2.a2
= a2.b2 - a4 + b4 + a2.b2
= a4 + 2a2b2 + b2 (hđt)
c) x2(x3 + 2y - x2y) - y(x2 - x4 + y)
= x2.x3 + x2.2y + x2.(-x2y) + (-y).x2 + (-y).(-x)4 + (-y).y
= x5 + 2x2y - x4y - x2y + x4y - y2
= x5 + (2xy2 - xy2) + (-x4y + x4y) - y2
= x5 + xy2 - y2
Bài 1 :
a, \(\left(a-2\right)^2-b^2=\left(a-2-b\right)\left(a-2+b\right)\)
b, \(2a^3-54b^3=2\left(a^3-27b^3\right)=2\left(a-3b\right)\left(a^2+3ab+9b\right)\)
Bài 2 : tự kết luận nhé, ngại mà lười :(
a, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
\(\Leftrightarrow\frac{4x-3}{5}-\frac{5x-4}{3}=\frac{6x-2}{7}+3\)
\(\Leftrightarrow\frac{12x-9-25x+20}{15}=\frac{6x-2+21}{7}\)
\(\Leftrightarrow\frac{-13x-29}{15}=\frac{6x+19}{7}\Rightarrow-91x-203=90x+285\)
\(\Leftrightarrow181x=-488\Leftrightarrow x=-\frac{488}{181}\)
b, \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)
\(\Leftrightarrow\frac{4x+8+9\left(2x-1\right)}{12}-\frac{10x-6}{12}=\frac{12x+5}{12}\)
\(\Rightarrow4x+8+18x-9-10x+6=12x+5\)
\(\Leftrightarrow12x+5=12x+5\Leftrightarrow0x=0\)
Vậy phương trình có vô số nghiệm
c, \(\left|2x-3\right|=4\)
Với \(x\ge\frac{3}{2}\)pt có dạng : \(2x-3=4\Leftrightarrow x=\frac{7}{2}\)
Với \(x< \frac{3}{2}\)pt có dạng : \(2x-3=-4\Leftrightarrow x=-\frac{1}{2}\)
d, \(\left|3x-1\right|-x=2\Leftrightarrow\left|3x-1\right|=x+2\)
Với \(x\ge\frac{1}{3}\)pt có dạng : \(3x-1=x+2\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Với \(x< \frac{1}{3}\)pt có dạng : \(3x-1=-x-2\Leftrightarrow4x=-1\Leftrightarrow x=-\frac{1}{4}\)
BÀI 1:
a) \(ĐKXĐ:\) \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)
b) \(A=\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)
\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)^2}{8}\)
\(=\frac{2x+4-2x+4}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}\)
\(=\frac{x+2}{x-2}\)
c) \(A=0\) \(\Rightarrow\)\(\frac{x+2}{x-2}=0\)
\(\Leftrightarrow\) \(x+2=0\)
\(\Leftrightarrow\)\(x=-2\) (loại vì ko thỏa mãn ĐKXĐ)
Vậy ko tìm đc x để A = 0
p/s: bn đăng từng bài ra đc ko, mk lm cho
\(=x^2+2x+1-2x^2+18+x^2-4x+4\\ =-2x+23=-2\cdot12+23=-24+23=-1\)