Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)\(đkxđ\Leftrightarrow x\ge0\)và \(x-9\ne0\Rightarrow x\ne9\)
\(A=\frac{6\sqrt{x}}{x-9}-\frac{5\sqrt{x}}{3-\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+3}\)
\(\)\(=\frac{6\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{5\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{6\sqrt{x}+5x+15\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{18\sqrt{x}+6x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{6\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{6\sqrt{x}}{\sqrt{x}-3}\)
\(b,\)Để \(A>2\)\(\Rightarrow\frac{6\sqrt{x}}{\sqrt{x}-3}>2\)
\(\Rightarrow\frac{6\sqrt{x}}{\sqrt{x}-3}>\frac{12\sqrt{x}}{x-3}\)
\(\Rightarrow\frac{6\sqrt{x}-12\sqrt{x}}{\sqrt{x}-3}>0\)
\(\Rightarrow\frac{6\sqrt{x}}{\sqrt{x}-3}< 0\)
Vì \(\sqrt{x}\ge0;\)\(6>0\)\(\Rightarrow6\sqrt{x}\ge0\)
\(\Rightarrow\frac{6\sqrt{x}}{\sqrt{x}-3}>0\Leftrightarrow\sqrt{x}-3< 0\)
\(\Rightarrow\sqrt{x}< 3\Rightarrow\sqrt{x}< \sqrt{9}\)\(\Leftrightarrow x< 9\)
Mà \(x\ge0\left(đkxđ\right)\)\(\Rightarrow0\le x< 9\)
1) Ta có: \(\frac{x+6\sqrt{x}+9}{x-9}=\frac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
cho − 3 bé hơn bằng x bé hơn bằng 3 rút gọn biểu thức T= \(\sqrt{x^2-6x+9}+\sqrt{x^2+6x+9}\) ta được
Ta có: \(T=\sqrt{x^2-6x+9}+\sqrt{x^2+6x+9}\)
\(=\left|x-3\right|+\left|x+3\right|\)
\(=3-x+x+3\)
\(=6\)
\(\frac{x^2-9-\left(4x-2\right)\left(x-3\right)}{x^2-6x+9}\)
\(=\frac{\left(x-3\right)\left(x+3\right)-\left(4x-2\right)\left(x-3\right)}{\left(x-3\right)^2}\)
\(=\frac{\left(x-3\right)\left[\left(x+3\right)-\left(4x-2\right)\right]}{\left(x-3\right)^2}\)
\(=\frac{x+3-4x+2}{x-3}\)
\(=\frac{-3x+5}{x-3}\)
\(x-3-\sqrt{x^2-6x+9}\left(1\right)=x-3-\sqrt{\left(x-3\right)^2}=x-3-\left|x-3\right|\)
TH1: \(x< 3\)
\(\left(1\right)=x-3+x-3=2x-6\)
TH2: \(x\ge3\)
\(\left(1\right)=x-3-x+3=0\)
\(x-3-\sqrt{x^2-6x+9}\)
\(=x-3-\left|x-3\right|\)
\(=\left[{}\begin{matrix}x-3-x+3=0\left(x\ge3\right)\\x-3+x-3=2x-6\left(x< 3\right)\end{matrix}\right.\)