\(\sqrt{x^2-4xy-4y^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 7 2020

Lời giải:

$x-2y-\sqrt{x^2-4xy+4y^2}$

$=x-2y-\sqrt{(x-2y)^2}=x-2y-|x-2y|$

Nếu $x\geq 2y$ thì $|x-2y|=x-2y$

Khi đó: $x-2y-\sqrt{x^2-4xy+4y^2}=0$

Nếu $x< 2y$ thì $|x-2y|=2y-x$

Khi đó: $x-2y-\sqrt{x^2-4xy+4y^2}=x-2y-(2y-x)=2(x-2y)$

4 tháng 6 2017

đề bài sai thì phải

4 tháng 6 2017

bạn Hoàng Thanh Tuấn nói đúng đấy

2 tháng 10 2021

a)=1-4a
b) = 2x - 4y
c) = 2x - 2 (nếu x>5)
=2x(nếu x<5)
 

3 tháng 10 2021

-1.       2x.        2x

2 tháng 7 2017

vế 2 là hằng đẳng thức đầu tiên ý

AH
Akai Haruma
Giáo viên
30 tháng 11 2018

Lời giải:

Sửa đề: Rút gọn \(x+2y-\sqrt{x^2-4xy+4y^2}\) \((x\geq 2y)\)

----------------

Ta có:

\(x+2y-\sqrt{x^2-4xy+4y^2}=x+2y-\sqrt{x^2-2.x.2y+(2y)^2}\)

\(=x+2y-\sqrt{(x-2y)^2}\)

\(=x+2y-|x-2y|=x+2y-(x-2y)=4y\)

(do \(x\geq 2y\Rightarrow |x-2y|=x-2y\) )

22 tháng 7 2017

1,Sửa lại điều kiện,mình nghĩ là: \(x \geq 12\)(chắc bạn ghi nhầm)

\(x \geq 12\) \(\Rightarrow\) \(x-12 \geq 0\) \(\Rightarrow\) \(\sqrt{\left(x-12\right)^2}=x-12\)

Ta có \(4x+\sqrt{\left(x-12\right)^2}\) = \(4x+x-12\) = 5x-12

2, Dư bình phương ở phần căn

\(x \geq 2y\) \(\Rightarrow\) \(x-2y \geq 0\)

Ta có : \(x+2y-\sqrt{\left(x^2-4xy+4y^2\right)}=x+2y-\sqrt{\left(x-2y\right)^2}=x+2y-\left(x-2y\right)=x+2y-x+2y=4y\)

22 tháng 7 2017

à cám ơn bạn nha!!!

13 tháng 8 2019

\(\Leftrightarrow x-2y-\sqrt{\left(x-2y\right)}\)

\(\Leftrightarrow x-2y-x+2y\)

\(\Leftrightarrow\)0

22 tháng 8 2019

Thiếu mũ rùi bn

28 tháng 6 2017

đề rút gọn \(A=x+2y-\sqrt{x^2-4xy+4y^2}\) biết \(x\ge2y\)

\(A=x+2y-\sqrt{x^2-4xy+4y^2}\)

\(A=x+2y-\sqrt{\left(x-2y\right)^2}\)

\(A=x+2y-x+2y=4y\) (do \(x\ge2y\))

AH
Akai Haruma
Giáo viên
1 tháng 9 2019

Lời giải:

a)

\(\sqrt{1-4a+4a^2}-2a=\sqrt{1-2.2a+(2a)^2}-2a\)

\(=\sqrt{(2a-1)^2}-2a=|2a-1|-2a=(2a-1)-2a=-1\)

(do $a\geq \frac{1}{2}$ nên $|2a-1|=2a-1$)

b)

\(x-2y-\sqrt{x^2-4xy+4y^2}=x-2y-\sqrt{(x-2y)^2}=x-2y-|x-2y|\)

\(=x-2y-(2y-x)=2(x-2y)\)

(do $x< 2y$ nên $|x-2y|=-(x-2y)=2y-x$)

c)

\(x^2+\sqrt{x^4-8x^2+16}=x^2+\sqrt{(x^2)^2-2.4.x^2+4^2}\)

\(=x^2+\sqrt{(x^2-4)^2}=x^2+|x^2-4|=x^2+(4-x^2)=4\)

(do $x^2< 4$ nên $|x^2-4|=4-x^2$)

2 tháng 7 2017

bổ sung: ý a) điều kiện x<2