\(125^5:25^7\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2019

1255 : 257

= (53)5 : (52)7

= 53.5 : 52.7

= 515 : 514

= 515 - 14

= 51 = 5

25 tháng 6 2019

TL:

\(\left(5^3\right)^5:\left(5^2\right)^7\) 

<=>\(5^{15}:5^{14}\) 

=5

hc tốt

13 tháng 8 2015

\(\frac{25^{14}.5^{10}.625^3.125^7}{5^{14}.125^{10}.25^3.625^7}=\frac{\left(5^2\right)^{14}.5^{10}.\left(5^4\right)^3.\left(5^3\right)^7}{5^{14}.\left(5^3\right)^{10}.\left(5^2\right)^3.\left(5^4\right)^7}=\frac{5^{28}.5^{10}.5^{12}.5^{21}}{5^{14}.5^{30}.5^6.5^{28}}\)

\(=\frac{5^{71}}{5^{78}}=\frac{1}{5^7}=\frac{1}{78125}\)

25 tháng 7 2017

\(\frac{3}{5}-\frac{3}{25}-\frac{3}{125}\)

\(=\frac{75}{125}-\frac{15}{125}-\frac{3}{125}\)

\(=\frac{57}{125}\)

_______________________________

\(\frac{7}{5}-\frac{7}{25}-\frac{7}{125}\)

\(=\frac{175}{125}-\frac{35}{125}-\frac{7}{125}\)

\(=\frac{133}{125}\)

20 tháng 9 2018

ta có: \(E=\frac{50^{12}.16^{14}}{8^{25}.125^8}\)

\(E=\frac{\left(2.5^2\right)^{12}.\left(2^4\right)^{14}}{\left(2^3\right)^{25}.\left(5^3\right)^8}\)

\(E=\frac{2^{68}.5^{24}}{2^{75}.5^{24}}=\frac{1}{2^7}=\frac{1}{128}\)

20 tháng 9 2018

ta có: \(E=\frac{50^{12}.16^{14}}{8^{25}.125^8}\)

\(E=\frac{\left(2.5^2\right)^{12}.\left(2^4\right)^{14}}{\left(2^3\right)^{25}.\left(5^3\right)^8}\)

\(E=\frac{2^{68}.5^{24}}{2^{75}.5^{24}}=\frac{1}{2^7}=\frac{1}{128}\)

\(=\dfrac{7^{48}\cdot5^{30}\cdot2^8-5^{30}\cdot7^{49}\cdot2^{10}}{3^2\cdot2^2\cdot5^2\cdot7^{48}}\)

\(=\dfrac{7^{48}\cdot5^{30}\cdot2^8\left(1+7\cdot4\right)}{3^2\cdot2^2\cdot5^2\cdot7^{48}}=\dfrac{5^{28}\cdot2^6\cdot12}{3^2}=\dfrac{5^{28}\cdot2^8}{3}\)

19 tháng 5 2017

\(A=\frac{49^{24}.125^{10}.2^8-5^{30}.7^{49}.4^5}{5^{29}.16^2.7^{43}}\)

\(A=\frac{7^{48}.5^{30}.2^8-5^{30}.7^{49}.2^{10}}{5^{29}.2^8.7^{43}}\)

\(A=\frac{5^{30}.7^{48}.2^8.\left(1-7.2^2\right)}{5^{29}.2^8.7^{43}}=5.7^3.\left(1-7.2^2\right)=1715.\left(-27\right)=-46305\)

19 tháng 5 2017

\(A=\frac{\left(7^2\right)^{24}.\left(5^3\right)^{10}.2^8-5^{30}.7^{49}.\left(2^2\right)^5}{5^{29}\left(2^4\right)^2.7^{43}}=\frac{7^{48}.5^{30}.2^8-5^{30}.7^{49}.2^{10}}{5^{29}.2^8.7^{43}}=\frac{7^{48}.5^{30}.2^8\left(1-7.2^2\right)}{5^{29}.2^8.7^{43}}\)

=\(7^5.5.\left(-27\right)=-2268945\)

5 tháng 7 2016

a.

\(\frac{2^7\times9^3}{6^5\times8^2}=\frac{2^7\times\left(3^2\right)^3}{\left(2\times3\right)^5\times\left(2^3\right)^2}=\frac{2^7\times3^6}{2^5\times3^5\times2^6}=\frac{3}{2^4}=\frac{3}{16}\)

b.

\(\frac{6^3+3\times6^2+3^3}{-13}=\frac{\left(2\times3\right)^3+3\times\left(3\times2\right)^2+3^3}{-13}=\frac{2^3\times3^3+3\times3^2\times2^2+3^3}{-13}=\frac{8\times3^3+3^3\times4+3^3}{-13}\)\(=\frac{3^3\times\left(8+4+1\right)}{-13}=\frac{27\times13}{-13}=-27\)

c.

\(\frac{5^4\times20^4}{25^5\times4^5}=\frac{\left(5\times20\right)^4}{\left(25\times4\right)^5}=\frac{100^4}{100^5}=\frac{1}{100}\)

d.

\(\left(\frac{5^4-5^3}{125^4}\right)=\frac{5^3\times\left(5-1\right)}{\left(5^3\right)^4}=\frac{5^3\times4}{5^{12}}=\frac{4}{5^9}\)

5 tháng 7 2016

a)\(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.\left(3^2\right)^3}{2^5.3^5.\left(2^3\right)^2}=\frac{2^7.3^6}{2^5.3^5.2^6}=\frac{3}{2^4}\)

b)\(\frac{6^3+3.6^2+3^3}{-13}=\frac{6.6^2+3.6^2+3^3}{-13}=\frac{6^2.\left(6+3\right)+3^3}{-13}=\frac{6^2.9+3^3}{-13}=\frac{6^2.3^2+3.3^2}{-13}=\frac{3^2.\left(6^2+3\right)}{-13}=\frac{3^2.39}{-13}=3^2.\left(-3\right)=-27\)

c)\(\frac{5^4.20^4}{25^5.4^5}=\frac{100^4}{100^5}=\frac{1}{100}\)

 

 

\(9^7+81^4-27^5\)

\(=\left(3^2\right)^7+\left(3^4\right)^4-\left(3^3\right)^5\)

\(=3^{14}+3^{16}-3^{15}\)

\(=3^{14}.\left(1+3^2-3\right)\)

\(=3^{14}.7⋮7\)

=> đpcm

\(25^{25}+5^{49}-125^{16}\)

\(=\left(5^2\right)^{25}+5^{49}-\left(5^3\right)^{16}\)

\(=5^{50}+5^{49}-5^{48}\)

\(=5^{48}.\left(5^2+5-1\right)\)

\(=5^{48}.29⋮29\)

=> đpcm

24 tháng 9 2020

              Bài làm :

\(\text{1) }9^7+81^4-27^5\)

\(=\left(3^2\right)^7+\left(3^4\right)^4-\left(3^3\right)^5\)

\(=3^{14}+3^{16}-3^{15}\)

\(=3^{14}\left(1+3^2-3\right)\)

\(=3^{14}.7⋮7\)

=> Điều phải chứng minh

\(\text{2)}25^{25}+5^{49}-125^{16}\)

\(=\left(5^2\right)^{25}+5^{49}-\left(5^3\right)^{16}\)

\(=5^{50}+5^{49}-5^{48}\)

\(=5^{48}\left(5^2+5-1\right)\)

\(=5^{48}.29⋮29\)

=> Điều phải chứng minh

30 tháng 7 2019

Bài làm

\(C=-\frac{3}{5}.\frac{20}{135}.\frac{-7}{1400}.\frac{250}{3}.\frac{27}{10}\)

\(C=\frac{-3}{5}.\frac{4}{27}.\frac{-1}{200}.\frac{250}{3}.\frac{27}{10}\)

\(C=\frac{-3.4.\left(-1\right).250.27}{5.27.200.3.10}\)

\(C=\frac{1}{10}\)

Vậy \(C=\frac{1}{10}\)

# Học tốt #

C = \(\frac{-3}{5}\cdot\frac{20}{135}\cdot\frac{-7}{1400}\cdot\frac{250}{3}\cdot\frac{27}{10}\)                                                                                                                                               C = \(\left(\frac{-3}{5}\cdot\frac{250}{3}\right)\cdot\left(\frac{20}{135}\cdot\frac{27}{10}\right)\cdot\frac{-7}{1400}\)                                                                                                                                C = \(-50\cdot\frac{2}{5}\cdot\frac{-7}{1400}\)                                                                                                                                                                             C = \(-20\cdot\frac{-7}{1400}\)                                                                                                                                                                                 C = \(\frac{1}{10}\)

28 tháng 11 2017

\(A=\frac{49^{24}.125^{10}.2^8-5^{30}.7^{49}.4^5}{5^{29}.16^2.7^{48}}\)

\(A=\frac{\left(7^2\right)^{24}.\left(5^3\right)^{10}.2^8-5^{30}.7^{49}.\left(2^2\right)^5}{5^{29}.\left(2^4\right)^2.7^{48}}\)

\(A=\frac{7^{49}.5^{30}.2^8-5^{30}.7^{49}.2^{10}}{5^{29}.2^8.7^{48}}\)

\(A=\frac{7^{48}.5^{30}.2^8\left(1-28\right)}{5^{29}.2^8.7^{48}}\)

\(A=5.\left(-27\right)\)

\(A=-135\)