![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{25^{14}.5^{10}.625^3.125^7}{5^{14}.125^{10}.25^3.625^7}=\frac{\left(5^2\right)^{14}.5^{10}.\left(5^4\right)^3.\left(5^3\right)^7}{5^{14}.\left(5^3\right)^{10}.\left(5^2\right)^3.\left(5^4\right)^7}=\frac{5^{28}.5^{10}.5^{12}.5^{21}}{5^{14}.5^{30}.5^6.5^{28}}\)
\(=\frac{5^{71}}{5^{78}}=\frac{1}{5^7}=\frac{1}{78125}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{3}{5}-\frac{3}{25}-\frac{3}{125}\)
\(=\frac{75}{125}-\frac{15}{125}-\frac{3}{125}\)
\(=\frac{57}{125}\)
_______________________________
\(\frac{7}{5}-\frac{7}{25}-\frac{7}{125}\)
\(=\frac{175}{125}-\frac{35}{125}-\frac{7}{125}\)
\(=\frac{133}{125}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có: \(E=\frac{50^{12}.16^{14}}{8^{25}.125^8}\)
\(E=\frac{\left(2.5^2\right)^{12}.\left(2^4\right)^{14}}{\left(2^3\right)^{25}.\left(5^3\right)^8}\)
\(E=\frac{2^{68}.5^{24}}{2^{75}.5^{24}}=\frac{1}{2^7}=\frac{1}{128}\)
ta có: \(E=\frac{50^{12}.16^{14}}{8^{25}.125^8}\)
\(E=\frac{\left(2.5^2\right)^{12}.\left(2^4\right)^{14}}{\left(2^3\right)^{25}.\left(5^3\right)^8}\)
\(E=\frac{2^{68}.5^{24}}{2^{75}.5^{24}}=\frac{1}{2^7}=\frac{1}{128}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(=\dfrac{7^{48}\cdot5^{30}\cdot2^8-5^{30}\cdot7^{49}\cdot2^{10}}{3^2\cdot2^2\cdot5^2\cdot7^{48}}\)
\(=\dfrac{7^{48}\cdot5^{30}\cdot2^8\left(1+7\cdot4\right)}{3^2\cdot2^2\cdot5^2\cdot7^{48}}=\dfrac{5^{28}\cdot2^6\cdot12}{3^2}=\dfrac{5^{28}\cdot2^8}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{49^{24}.125^{10}.2^8-5^{30}.7^{49}.4^5}{5^{29}.16^2.7^{43}}\)
\(A=\frac{7^{48}.5^{30}.2^8-5^{30}.7^{49}.2^{10}}{5^{29}.2^8.7^{43}}\)
\(A=\frac{5^{30}.7^{48}.2^8.\left(1-7.2^2\right)}{5^{29}.2^8.7^{43}}=5.7^3.\left(1-7.2^2\right)=1715.\left(-27\right)=-46305\)
\(A=\frac{\left(7^2\right)^{24}.\left(5^3\right)^{10}.2^8-5^{30}.7^{49}.\left(2^2\right)^5}{5^{29}\left(2^4\right)^2.7^{43}}=\frac{7^{48}.5^{30}.2^8-5^{30}.7^{49}.2^{10}}{5^{29}.2^8.7^{43}}=\frac{7^{48}.5^{30}.2^8\left(1-7.2^2\right)}{5^{29}.2^8.7^{43}}\)
=\(7^5.5.\left(-27\right)=-2268945\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a.
\(\frac{2^7\times9^3}{6^5\times8^2}=\frac{2^7\times\left(3^2\right)^3}{\left(2\times3\right)^5\times\left(2^3\right)^2}=\frac{2^7\times3^6}{2^5\times3^5\times2^6}=\frac{3}{2^4}=\frac{3}{16}\)
b.
\(\frac{6^3+3\times6^2+3^3}{-13}=\frac{\left(2\times3\right)^3+3\times\left(3\times2\right)^2+3^3}{-13}=\frac{2^3\times3^3+3\times3^2\times2^2+3^3}{-13}=\frac{8\times3^3+3^3\times4+3^3}{-13}\)\(=\frac{3^3\times\left(8+4+1\right)}{-13}=\frac{27\times13}{-13}=-27\)
c.
\(\frac{5^4\times20^4}{25^5\times4^5}=\frac{\left(5\times20\right)^4}{\left(25\times4\right)^5}=\frac{100^4}{100^5}=\frac{1}{100}\)
d.
\(\left(\frac{5^4-5^3}{125^4}\right)=\frac{5^3\times\left(5-1\right)}{\left(5^3\right)^4}=\frac{5^3\times4}{5^{12}}=\frac{4}{5^9}\)
a)\(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.\left(3^2\right)^3}{2^5.3^5.\left(2^3\right)^2}=\frac{2^7.3^6}{2^5.3^5.2^6}=\frac{3}{2^4}\)
b)\(\frac{6^3+3.6^2+3^3}{-13}=\frac{6.6^2+3.6^2+3^3}{-13}=\frac{6^2.\left(6+3\right)+3^3}{-13}=\frac{6^2.9+3^3}{-13}=\frac{6^2.3^2+3.3^2}{-13}=\frac{3^2.\left(6^2+3\right)}{-13}=\frac{3^2.39}{-13}=3^2.\left(-3\right)=-27\)
c)\(\frac{5^4.20^4}{25^5.4^5}=\frac{100^4}{100^5}=\frac{1}{100}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(9^7+81^4-27^5\)
\(=\left(3^2\right)^7+\left(3^4\right)^4-\left(3^3\right)^5\)
\(=3^{14}+3^{16}-3^{15}\)
\(=3^{14}.\left(1+3^2-3\right)\)
\(=3^{14}.7⋮7\)
=> đpcm
\(25^{25}+5^{49}-125^{16}\)
\(=\left(5^2\right)^{25}+5^{49}-\left(5^3\right)^{16}\)
\(=5^{50}+5^{49}-5^{48}\)
\(=5^{48}.\left(5^2+5-1\right)\)
\(=5^{48}.29⋮29\)
=> đpcm
Bài làm :
\(\text{1) }9^7+81^4-27^5\)
\(=\left(3^2\right)^7+\left(3^4\right)^4-\left(3^3\right)^5\)
\(=3^{14}+3^{16}-3^{15}\)
\(=3^{14}\left(1+3^2-3\right)\)
\(=3^{14}.7⋮7\)
=> Điều phải chứng minh
\(\text{2)}25^{25}+5^{49}-125^{16}\)
\(=\left(5^2\right)^{25}+5^{49}-\left(5^3\right)^{16}\)
\(=5^{50}+5^{49}-5^{48}\)
\(=5^{48}\left(5^2+5-1\right)\)
\(=5^{48}.29⋮29\)
=> Điều phải chứng minh
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm
\(C=-\frac{3}{5}.\frac{20}{135}.\frac{-7}{1400}.\frac{250}{3}.\frac{27}{10}\)
\(C=\frac{-3}{5}.\frac{4}{27}.\frac{-1}{200}.\frac{250}{3}.\frac{27}{10}\)
\(C=\frac{-3.4.\left(-1\right).250.27}{5.27.200.3.10}\)
\(C=\frac{1}{10}\)
Vậy \(C=\frac{1}{10}\)
# Học tốt #
C = \(\frac{-3}{5}\cdot\frac{20}{135}\cdot\frac{-7}{1400}\cdot\frac{250}{3}\cdot\frac{27}{10}\) C = \(\left(\frac{-3}{5}\cdot\frac{250}{3}\right)\cdot\left(\frac{20}{135}\cdot\frac{27}{10}\right)\cdot\frac{-7}{1400}\) C = \(-50\cdot\frac{2}{5}\cdot\frac{-7}{1400}\) C = \(-20\cdot\frac{-7}{1400}\) C = \(\frac{1}{10}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{49^{24}.125^{10}.2^8-5^{30}.7^{49}.4^5}{5^{29}.16^2.7^{48}}\)
\(A=\frac{\left(7^2\right)^{24}.\left(5^3\right)^{10}.2^8-5^{30}.7^{49}.\left(2^2\right)^5}{5^{29}.\left(2^4\right)^2.7^{48}}\)
\(A=\frac{7^{49}.5^{30}.2^8-5^{30}.7^{49}.2^{10}}{5^{29}.2^8.7^{48}}\)
\(A=\frac{7^{48}.5^{30}.2^8\left(1-28\right)}{5^{29}.2^8.7^{48}}\)
\(A=5.\left(-27\right)\)
\(A=-135\)
1255 : 257
= (53)5 : (52)7
= 53.5 : 52.7
= 515 : 514
= 515 - 14
= 51 = 5
TL:
\(\left(5^3\right)^5:\left(5^2\right)^7\)
<=>\(5^{15}:5^{14}\)
=5
hc tốt