\(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+.....+\dfrac{1}{n^2}\)

H...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

bạn nên tự nghiên cứu rồi giải đi chứ bạn đưa 1 loạt thế thì ai rảnh mà giải, với lại cứ bài gì không biết chưa chịu suy nghĩ đã hỏi rồi thì tiến bộ sao được, đúng không

14 tháng 7 2017

Rốt cuộc cái đề nào đúng????

14 tháng 7 2017

Xin lỗi bạn cái đề trên đấy bạn

31 tháng 5 2017

a ) \(\dfrac{2}{\sqrt{3}-1}\) - \(\dfrac{2}{\sqrt{3}+1}\) = \(\dfrac{2\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)

= \(\dfrac{2\sqrt{3}+2-2\sqrt{3}+2}{3-1}\) = \(\dfrac{4}{2}\) = 2

b) \(\dfrac{5}{12\left(2\sqrt{5}+3\sqrt{2}\right)}\) - \(\dfrac{5}{12\left(2\sqrt{5}-3\sqrt{2}\right)}\)

= \(\dfrac{5\left(2\sqrt{5}-3\sqrt{2}\right)-5\left(2\sqrt{5}+3\sqrt{2}\right)}{12\left(2\sqrt{5}+3\sqrt{2}\right)\left(2\sqrt{5}-3\sqrt{2}\right)}\)

= \(\dfrac{10\sqrt{5}-15\sqrt{2}-10\sqrt{5}-15\sqrt{2}}{12\left(20-18\right)}\)

= \(\dfrac{-30\sqrt{2}}{24}\) = \(\dfrac{-15\sqrt{2}}{12}\) = \(\dfrac{-5\sqrt{2}}{4}\)

c) \(\dfrac{5+\sqrt{5}}{5-\sqrt{5}}\) +\(\dfrac{5-\sqrt{5}}{5+\sqrt{5}}\) = \(\dfrac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\)

= \(\dfrac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\) = \(\dfrac{60}{20}\) = 3

31 tháng 5 2017

d) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3+1}}-1}\) - \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3+1}}+1}\)

= \(\dfrac{\sqrt{3}}{\sqrt{2}-1}\) - \(\dfrac{\sqrt{3}}{\sqrt{2}+1}\) = \(\dfrac{\sqrt{3}\left(\sqrt{2}+1\right)-\sqrt{3}\left(\sqrt{2}-1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)

= \(\dfrac{\sqrt{6}+\sqrt{3}-\sqrt{6}+\sqrt{3}}{2-1}\) = \(2\sqrt{3}\)

AH
Akai Haruma
Giáo viên
12 tháng 9 2018

Lời giải:

Xét \(1+\frac{1}{n^2}+\frac{1}{(n+1)^2}=\frac{n^2+1}{n^2}+\frac{1}{(n+1)^2}\)

\(=\frac{(n+1)^2-2n}{n^2}+\frac{1}{(n+1)^2}=\left(\frac{n+1}{n}\right)^2+\frac{1}{(n+1)^2}-\frac{2}{n}\)

\(=\left(\frac{n+1}{n}-\frac{1}{n+1}\right)^2=\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2\)

\(\Rightarrow \sqrt{1+\frac{1}{n^2}+\frac{1}{(n+1)^2}}=1+\frac{1}{n}-\frac{1}{n+1}\)

Áp dụng vào bài toán suy ra:

\(A=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2017}-\frac{1}{2018}\)

\(=2016+\frac{1}{2}-\frac{1}{2018}=2016,5-\frac{1}{2018}\)

12 tháng 6 2018

C=\(\dfrac{x-x^3}{x^2+1}\left(\dfrac{1}{1+2x+x^2}+\dfrac{1}{1-x^2}\right)+\dfrac{1}{1+x}\)

\(=\dfrac{x\left(1-x^2\right)}{x^2+1}\left(\dfrac{1}{\left(1+x\right)^2}+\dfrac{1}{\left(1-x\right)\left(1+x\right)}\right)+\dfrac{1}{1+x}\)

\(=\dfrac{x\left(1-x\right)\left(1+x\right)}{x^2+1}\left(\dfrac{1-x+1+x}{\left(1-x\right)\left(1+x\right)^2}\right)+\dfrac{1}{1+x}\)

\(=\dfrac{x\left(1-x\right)\left(1+x\right).2}{\left(x^2+1\right)\left(1-x\right)\left(1+x^2\right)}+\dfrac{1}{1+x}\)

\(=\dfrac{2x}{\left(x^2+1\right)\left(1+x\right)}+\dfrac{1}{1+x}\)

\(=\dfrac{2x+\left(x^2+1\right)}{\left(x^2+1\right)\left(1+x\right)}\)

\(=\dfrac{2x+x^2+1}{\left(x^2+1\right)\left(x+1\right)}\)

\(=\dfrac{x^2+2x+1}{\left(x^2+1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x+1\right)^2}{\left(x^2+1\right)\left(x +1\right)}\)

\(=\dfrac{x+1}{x^2+1}\)

6 tháng 10 2018

cho mình sửa lại đề câu 1 với

(\(\dfrac{2x-\sqrt{x}+2}{x-4}+\dfrac{1}{\sqrt{x+2}}\)) =\(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

Bài 2: 

a: \(B=\dfrac{x+3+\sqrt{x}-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)

b: \(x=5-\sqrt{2}-4-\sqrt{2}=1\)

Khi x=1 thì \(B=\dfrac{1+1}{1+3}=\dfrac{2}{5}\)

c: \(B-\dfrac{1}{3}=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}-\dfrac{1}{3}=\dfrac{3\sqrt{x}+3-\sqrt{x}-3}{3\left(\sqrt{x}+3\right)}>0\)

=>B>1/3

15 tháng 7 2017

a) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}=\sqrt{16}-6+\sqrt{20}-\sqrt{5}=4-6+2\sqrt{5}-\sqrt{5}=\sqrt{5}-2\)

b) \(0,2\sqrt{\left(-10\right)^3.3}+2\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}=0,2\left|-10\right|\sqrt{3}+2\left|\sqrt{3}-\sqrt{5}\right|=0,2.10.\sqrt{3}+2\left(\sqrt{5}-\sqrt{3}\right)=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}=2\sqrt{5}\)

c) \(\left(\dfrac{1}{2}\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}=\left(\dfrac{1}{2}\sqrt{\dfrac{2}{4}}-\dfrac{3}{2}\sqrt{2}+8\sqrt{2}\right):\dfrac{1}{8}=\left(\dfrac{1}{4}\sqrt{2}-\dfrac{2}{3}\sqrt{2}+8\sqrt{2}\right):\dfrac{1}{8}=\dfrac{27}{4}\sqrt{2}.8=54\sqrt{2}\)

d) \(2\sqrt{\left(\sqrt{2}-3\right)^2}+\sqrt{2.\left(-3\right)^2}-5\sqrt{\left(-1\right)^4}=2\left(3-\sqrt{2}\right)+3\sqrt{2}-5=6-2\sqrt{2}+3\sqrt{2}-5=1+\sqrt{2}\)