Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét: \(A=\sqrt{26+15\sqrt{3}}\) dễ thấy A > 0
\(\Leftrightarrow A^2=52-2\sqrt{26^2-15^2.3}=50\Leftrightarrow A=\sqrt{50}\)
Vậy: \(A=2+\sqrt{3}.\sqrt{26+15\sqrt{3}}-2\sqrt{3}.\sqrt{26-15\sqrt{3}}\)
\(=2+\sqrt{3}.A=2+\sqrt{3}.\sqrt{50}=5\sqrt{6}+10\sqrt{2}\)
a,
\(\sqrt{4-2\sqrt{3}}-\sqrt{3}\\ =\sqrt{3-2\cdot1\cdot\sqrt{3}+1}-\sqrt{3}\\ =\sqrt{\left(\sqrt{3}\right)^2-2\cdot1\cdot\sqrt{3}+1^2}-\sqrt{3}\\ =\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\\ =\sqrt{3}-1-\sqrt{3}\\ =-1\)
b,
\(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\\ =\sqrt{9+2\cdot3\cdot\sqrt{2}+2}-3+\sqrt{2}\\ =\sqrt{3^2+2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}-3+\sqrt{2}\\ =\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}\\ =3+\sqrt{2}-3+\sqrt{2}\\ =2\sqrt{2}\)
c,
\(\sqrt{7+2\sqrt{10}}-\sqrt{7-2\sqrt{10}}\\ =\sqrt{5+2\cdot\sqrt{2\cdot5}+2}-\sqrt{5-2\cdot\sqrt{2\cdot5}+2}\\ =\sqrt{\left(\sqrt{5}\right)^2+2\cdot\sqrt{2}\cdot\sqrt{5}+\left(\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}\right)^2-2\cdot\sqrt{2}\cdot\sqrt{5}+\left(\sqrt{2}\right)^2}\\ =\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\\ =\sqrt{5}+\sqrt{2}-\sqrt{5}+\sqrt{2}\\ =2\sqrt{2}\)
d,
\(\left(20\sqrt{300}-15\sqrt{675}+5\sqrt{75}\right):\sqrt{15}\\ =\left(20\cdot\sqrt{20}\cdot\sqrt{15}-15\cdot\sqrt{45}\cdot\sqrt{15}+5\cdot\sqrt{5}\cdot\sqrt{15}\right):\sqrt{15}\\ =\left(20\cdot2\cdot\sqrt{5}\cdot\sqrt{15}-15\cdot3\cdot\sqrt{5}\cdot\sqrt{15}+5\cdot\sqrt{5}\cdot\sqrt{15}\right):\sqrt{15}\\ =\sqrt{15}\cdot\left(20\cdot2\cdot\sqrt{5}-15\cdot3\cdot\sqrt{5}+5\cdot\sqrt{5}\right):\sqrt{15}\\ =20\cdot2\cdot\sqrt{5}-15\cdot3\cdot\sqrt{5}+5\cdot\sqrt{5}\\ =40\sqrt{5}-45\sqrt{5}+5\sqrt{5}\\ =0\)
1. Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 9 - Học toán với OnlineMath
cau a,b,c thay no co chung 1 dang do la
\(\sqrt[3]{a+m}+\sqrt[3]{a-m}\)
dang nay co 2 cach
C1: nhanh kho nhin de sai
VD: cau B
\(B^3=40+3\sqrt[3]{\left(20+14\sqrt{2}\right)\left(20-14\sqrt{2}\right)}\left(B\right)\)
B^3=40+3(2)(B)
B^3=40+6B
B=4
C2: hoi dai nhung de nhin
dat \(a=\sqrt[3]{20+14\sqrt{2}};b=\sqrt[3]{20-14\sqrt{2}}\)
de thay B=a+b
ab=2
a^3+b^3=40
suy ra B^3=a^3+b^3+3ab(a+b)
B^3=40+6B
B=4
giai tuong tu
con co cach nay nhung it su dung vi kho tim
C3: dua ve tong lap phuong
VD:cau B
\(20+14\sqrt{2}=\left(2+\sqrt{2}\right)^3\)
\(20-14\sqrt{2}=\left(2-\sqrt{2}\right)^3\)
de thay
B=4
cau d)
dung CT nay
\(\sqrt[m]{a}=\sqrt[m\cdot n]{\left(a\right)^n}\)
ap dung vao bai
\(\sqrt[3]{2\sqrt{3}-4\sqrt{2}}=\sqrt[6]{\left(2\sqrt{3}-4\sqrt{2}\right)^2}=\sqrt[6]{44-16\sqrt{6}}\)
nhanh vao
\(\sqrt[6]{\left(44-16\sqrt{6}\right)\left(44+16\sqrt{6}\right)}=\sqrt[6]{400}=\sqrt[3]{20}\)
ÁP DỤNG HẰNG ĐẲNG THỨC TA ĐƯỢC
\(=\sqrt{\left(\sqrt{13.5}+\sqrt{12.5}\right)^2}-\sqrt{\left(\sqrt{13.5}-\sqrt{12.5}\right)^2}\)
\(=\sqrt{13.5}+\sqrt{12.5}-\sqrt{13.5}+\sqrt{12.5}\)
\(=2\sqrt{12.5}\)
\(=5\sqrt{2}\)