\(\sqrt{162+72\sqrt{2}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2015

\(\sqrt{162+72\sqrt{2}}=\sqrt{162+2\sqrt{36^2.2}}=\sqrt{144+2\sqrt{144.18}+18}\)

\(=\sqrt{\left(\sqrt{144}+\sqrt{18}\right)^2}=\sqrt{144}+\sqrt{18}=12+3\sqrt{2}\)

tick nha

14 tháng 10 2020

a) \(=\sqrt{\frac{9}{2}}-\sqrt{16.2}+\sqrt{36.2}-\sqrt{81.2}\)

\(=\frac{3}{2}\sqrt{2}-4\sqrt{2}+6\sqrt{2}-9\sqrt{2}\)

\(=\left(\frac{3}{2}-4+6-9\right)\sqrt{2}=\frac{-11}{2}\sqrt{2}\)

b) \(=\frac{\sqrt{5}+3-\sqrt{5}+3}{\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)}.\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\)

\(=\frac{6}{5-9}.\left(-\sqrt{3}\right)=\frac{3}{2}\sqrt{3}\)

c) \(=\left(\frac{a-1-4\sqrt{a}+\sqrt{a}+1}{a-1}\right):\frac{\sqrt{a}\left(\sqrt{a}-2\right)}{a-1}\)

\(=\frac{a-3\sqrt{a}}{a-1}.\frac{a-1}{\sqrt{a}\left(\sqrt{a}-2\right)}\)

\(=\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}\left(\sqrt{a}-2\right)}=\frac{\sqrt{a}-3}{\sqrt{a}-2}\)

11 tháng 9 2018

\(\sqrt{2\cdot36}+\sqrt{2\cdot\dfrac{9}{4}}-\sqrt{2\cdot16}-\sqrt{2\cdot81}=6\sqrt{2}+\dfrac{3}{2}\sqrt{2}-4\sqrt{2}-9\sqrt{2}=\dfrac{-11}{2}\sqrt{2}\)

21 tháng 7 2017

a)\(2\sqrt{18}+3\sqrt{8}-3\sqrt{32}-\sqrt{50}\)
\(=2\sqrt{9.2}+3\sqrt{4.2}-3\sqrt{16.2}-\sqrt{25.2}\)
\(=6\sqrt{2}+6\sqrt{2}-12\sqrt{2}-5\sqrt{2}\)
\(=-5\sqrt{2}\)
b) \(\sqrt{200}-\sqrt{32}-\sqrt{72}\)
\(=\sqrt{100.2}-\sqrt{16.2}-\sqrt{36.2}\)
\(=10\sqrt{2}-4\sqrt{2}-6\sqrt{2}\)
\(=0\)
c) \(\sqrt{175}-\sqrt{112}+\sqrt{63}\)
\(=\sqrt{25.7}-\sqrt{16.7}+\sqrt{9.7}\)
\(=5\sqrt{7}-4\sqrt{7}+3\sqrt{7}\)
\(=4\sqrt{7}\)
d) \(3\sqrt{8}-\sqrt{32}+4\sqrt{2}+\sqrt{162}\)
\(=3\sqrt{4.2}-\sqrt{16.2}+4\sqrt{2}+\sqrt{81.2}\)
\(=6\sqrt{2}-4\sqrt{2}+4\sqrt{2}+9\sqrt{2}\)
\(=15\sqrt{2}\)

14 tháng 8 2016

a) \(\sqrt{\frac{2a^2b^4}{50}}=\sqrt{\frac{a^2b^4}{25}}=\frac{\sqrt{a^2b^4}}{\sqrt{25}}=\frac{ab^2}{5}\)

b) \(\frac{\sqrt{2ab^2}}{\sqrt{162}}=\sqrt{\frac{2ab^2}{162}}=\sqrt{\frac{ab^2}{81}}=\frac{\sqrt{ab^2}}{\sqrt{81}}=\frac{b\sqrt{a}}{9}\)

27 tháng 7 2019

a, A = \(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)

= \(3\sqrt{3}+8\sqrt{3}-15\sqrt{3}\)

= \(-4\sqrt{3}\)

b, B = \(\sqrt{32}-\sqrt{50}+\sqrt{18}\)

= \(4\sqrt{2}-5\sqrt{2}+3\sqrt{2}\)

= \(2\sqrt{2}\)

11 tháng 8 2016

\(\sqrt{20}\cdot\sqrt{72}\cdot\sqrt{4,9}=\sqrt{20\cdot72\cdot4,9}=\sqrt{2\cdot10\cdot72\cdot4,9}\\ =\sqrt{144\cdot49}=\sqrt{144}\cdot\sqrt{49}=12\cdot7=84\)

Bài 2:

a) \(\sqrt{3a^3}\cdot\sqrt{12a}=\sqrt{3a^3\cdot12a}=\sqrt{36a^4}=6a^2\)

b) \(\sqrt{2a\cdot32ab^2}=\sqrt{64a^2b^2}=8ab\)

7 tháng 12 2016

\(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)

\(=\sqrt{4.5}-\sqrt{9.5}+3\sqrt{18}+\sqrt{4.18}\)

\(=2\sqrt{5}-3\sqrt{5}+3\sqrt{18}+2\sqrt{18}\)

\(=-\sqrt{5}+5\sqrt{18}\)

8 tháng 12 2016

\(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)

\(=2\sqrt{5}-3\sqrt{5}+3\sqrt{18}+2\sqrt{18}\)

\(=-\sqrt{5}+5\sqrt{18}\)