Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vậy cái điều kiện \(x\ne\sqrt{3}\)người ta cho chi bạn. Bạn nên để ý là cái điều kiện người ta cho là nhằm cho cái đó nó xác định chớ không cho tào lao đâu. x # 0 cũng là vì lý do đó nên mình chắc cái đề trong sách in sai
Với điều kiện kèm theo thì mình chắc rằng cái đề phải là x - \(\sqrt{27}\) chứ không thể lad x - 27 được. Bạn xem lại đề nhé
\(\sqrt{8-2\sqrt{15}}+\sqrt{48+6\sqrt{15}}\\ =\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}+\sqrt{45+2\cdot3\sqrt{5}\cdot\sqrt{3}+3}\\ =\sqrt{\left(\sqrt{5}\right)^2-2\cdot\sqrt{5}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{5}\right)^2+2\cdot3\sqrt{5}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}\\ =\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{5}+\sqrt{3}\right)^2}\\ =\sqrt{5}-\sqrt{3}+3\sqrt{5}+\sqrt{3}=4\sqrt{5}\)
\(\sqrt{8-\sqrt{60}}-\sqrt{23-\sqrt{240}}\\ =\sqrt{8-\sqrt{4\cdot15}}-\sqrt{23-\sqrt{4\cdot60}}\\ =\sqrt{8-2\sqrt{15}}-\sqrt{23-2\sqrt{60}}\\ =\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{20-2\cdot\sqrt{20}\cdot\sqrt{3}+3}\\ =\sqrt{5}-\sqrt{3}-\sqrt{\left(\sqrt{20}-\sqrt{3}\right)^2}\\ =\sqrt{5}-\sqrt{3}-\sqrt{20}+\sqrt{3}\\ =\sqrt{5}-2\sqrt{5}=-\sqrt{5}\)
a)
\(\sqrt{13-4\sqrt{3}}\\ =\sqrt{12-2\cdot2\sqrt{3}\cdot1+1}\\ =\sqrt{\left(2\sqrt{3}\right)^2-2\cdot2\sqrt{3}\cdot1+1}\\ =\sqrt{\left(2\sqrt{3}-1\right)^2}\\ =2\sqrt{3}-1\)
b)
\(\sqrt{9+6\sqrt{2}}\\ =\sqrt{9+2\cdot\sqrt{3}\cdot\sqrt{3}\cdot\sqrt{2}}\\ =\sqrt{6+2\cdot\sqrt{6}\cdot\sqrt{3}+3}\\ =\sqrt{\left(\sqrt{6}\right)^2+2\cdot\sqrt{6}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}\\ =\sqrt{\left(\sqrt{6}+\sqrt{3}\right)^2}\\ =\sqrt{6}+\sqrt{3}=\sqrt{3}\left(\sqrt{2}+1\right)\)
c)
\(\sqrt{10+4\sqrt{6}}\\ =\sqrt{6+2\cdot\sqrt{6}\cdot2+4}\\ =\sqrt{\left(\sqrt{6}\right)^2+2\cdot\sqrt{6}\cdot2+2^2}\\ =\sqrt{\left(\sqrt{6}+2\right)^2}\\ =\sqrt{6}+2\)
\(a.\sqrt{4-\sqrt{15}}.\sqrt{4+\sqrt{15}}\)
\(=\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}=\sqrt{\left(16-15\right)}=\sqrt{1}=1\)
\(b.\sqrt{7-\sqrt{47}}.\sqrt{14+2\sqrt{47}}\)
\(=\sqrt{7-\sqrt{47}}.\sqrt{2\left(7-\sqrt{47}\right)}\)
\(=\sqrt{2\left(7-\sqrt{47}\right)\left(7+\sqrt{47}\right)}=\sqrt{2\left(49-47\right)}=\sqrt{2^2}=\sqrt{4}=2\)
\(c.\sqrt{4+\sqrt{10+2\sqrt{5}}}.\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(=\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)
\(=\sqrt{16-\left(\sqrt{10+2\sqrt{5}}\right)^2}\)
\(=\sqrt{16-10-2\sqrt{5}}=\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-1\)
\(\left(\sqrt{5}+2\right).\sqrt{17-4\sqrt{9+4\sqrt{5}}}=\left(\sqrt{5}+2\right).\sqrt{17-4\sqrt{\left(\sqrt{5}\right)^2+2.2.\sqrt{5}+2^2}}=\left(\sqrt{5}+2\right).\sqrt{17-4\sqrt{\left(\sqrt{5}+2\right)^2}}=\left(\sqrt{5}+2\right).\sqrt{17-4.\sqrt{5}-8}=\left(\sqrt{5}+2\right).\sqrt{9-4\sqrt{5}}=\left(\sqrt{5}+2\right).\sqrt{\left(\sqrt{5}\right)^2-2.2.\sqrt{5}+2^2}=\left(\sqrt{5}+2\right).\sqrt{\left(\sqrt{5}-2\right)^2}=\left(\sqrt{5}+2\right).\left(\sqrt{5}-2\right)=\left(\sqrt{5}\right)^2-4=5-4=1\)
\(A=2\sqrt{27}-\sqrt{75}-\sqrt{\frac{4}{3}}\)\(=2\sqrt{9.3}-\sqrt{25.3}-\sqrt{\frac{4.3}{9}}\)\(=2.3\sqrt{3}-5\sqrt{3}-\frac{2}{3}\sqrt{3}\)\(=6\sqrt{3}-5\sqrt{3}-\frac{2}{3}\sqrt{3}\)\(=\frac{1}{3}\sqrt{3}\)\(=\frac{\sqrt{3}}{3}\)
Câu A=4
Cách giải:
\(\left(5\sqrt{3}+2\sqrt{12}-\sqrt{75}\right):\sqrt{3}\)
\(=\left(5\sqrt{3}+2\sqrt{4\cdot3}-\sqrt{25\cdot3}\right)\)\(:\sqrt{3}\)
\(=\left(5\sqrt{3}+4\sqrt{3}-5\sqrt{3}\right)\)\(:\sqrt{3}\)
\(\sqrt{15-10\sqrt{2}}\\ =\sqrt{15-2\cdot\sqrt{5}\cdot\sqrt{5}\cdot\sqrt{2}}\\ =\sqrt{\left(\sqrt{10}\right)^2-2\cdot\sqrt{10}\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}\\ =\sqrt{\left(\sqrt{10}-\sqrt{5}\right)^2}\\ =\sqrt{10}-\sqrt{5}\\ =\sqrt{5}\left(\sqrt{2}-1\right)\)
bạn có thể giải thich được không mk xin cảm ơn