\(\frac{1}{1+2}\)) (1-\(\frac{1}{1+2+3}\))......">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

Với mọi \(n\in N\) ta có :

\(1-\frac{1}{1+2+3+...+n}=1-\frac{1}{\frac{n\left(n+1\right)}{2}}=1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}\)

\(=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{n^2-n+2n-2}{n\left(n+1\right)}=\frac{n\left(n-1\right)+2\left(n-1\right)}{n\left(n+1\right)}=\frac{\left(n+2\right)\left(n-1\right)}{n\left(n+1\right)}\)

Áp dụng ta được :

\(S=\frac{4.1}{2.3}.\frac{5.2}{3.4}......\frac{2018.2015}{2016.2017}\)

\(=\frac{\left(1.2.3....2015\right).\left(4.5....2018\right)}{\left(2.3.4.....2016\right).\left(3.4....2017\right)}=\frac{2018}{2016.3}=\frac{1009}{3024}\)

27 tháng 9 2017

a) \(\frac{4x^2-3x+17}{x^3-1}+\frac{2x-1}{x^2+x+1}+\frac{6}{1-x}\)

\(=\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{4x^2-3x+17+2x^2-x-2x+1-6x^2-6x-6}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{-12x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{-12\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=-\frac{12}{x^2+x+1}\)

b) \(\frac{1}{x^2-x+1}-\frac{x^2+2}{x^3+1}+1=\frac{x+1-x^2-2+x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{x-x^2+x^3}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x}{x+1}\)

c) \(N=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{2017c}{ac+2017c+2017}\)

\(N=\frac{a}{a\left(b+1+bc\right)}+\frac{b}{bc+b+1}+\frac{2017c}{ac+2017c+2017}\)

\(N=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{2017c}{ac+2017c+2017}\)

\(N=\frac{1+b}{b+1+bc}+\frac{abc^2}{ac+abc^2+abc}\)

\(N=\frac{1+b}{b+1+bc}+\frac{abc^2}{ac\left(1+bc+b\right)}\)

\(N=\frac{1+b}{b+1+bc}+\frac{bc}{1+bc+b}\)

\(N=\frac{1+b+bc}{b+1+bc}\)

\(N=1.\)

12 tháng 8 2017

Với mọi \(k\in N\)Ta có :

\(1-\frac{1}{k^2}=\frac{k^2-1}{k^2}=\frac{\left(k-1\right)\left(k+1\right)}{k^2}\)

Áp dụng ta có :

\(A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right).....\left(1-\frac{1}{n^2}\right)\)

\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}.......\frac{\left(n-1\right)\left(n+1\right)}{n^2}\)

\(=\frac{\left[1.2.3.....\left(n-1\right)\right]\left[3.4.5.....\left(n+1\right)\right]}{\left(2.3.4.....n\right)\left(2.3.4.....n\right)}\)

\(=\frac{n+1}{2n}\)

23 tháng 6 2018

\(A=\frac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}+.......+\frac{\sqrt{n}-\sqrt{n-1}}{\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n}-1\right)}\)

\(=\frac{\sqrt{2}-\sqrt{1}}{2-1}+........+\frac{\sqrt{n}-\sqrt{n-1}}{n-\left(n-1\right)}\)

\(=\sqrt{2}-\sqrt{1}+...........+\sqrt{n}-\sqrt{n-1}\)

\(=\sqrt{n}-\sqrt{1}=\sqrt{n}-1\)

bài B tương tự 

18 tháng 12 2016

a,\(A=\frac{6x+12}{\left(x+2\right)\left(2x-6\right)}=\frac{6\left(x+2\right)}{2\left(x+2\right)\left(x-3\right)}=\frac{3}{x-3}\)

b, Giá trị của x để phân thức có giá trị bằng (-2) : 

\(\frac{3}{x-3}=-2\Rightarrow x=1,5\)

18 tháng 12 2016

Ai giúp mình câu 2 với

4 tháng 5 2019

a, \(Đkxđ:\hept{\begin{cases}x\ne1\\x\ne\pm3\end{cases}}\)

\(P=\left(1+\frac{1}{x-1}\right):\left(\frac{x^2-7}{x^2-4x+3}+\frac{1}{x-1}+\frac{1}{3-x}\right)\)

\(=\left(\frac{x-1}{x-1}+\frac{1}{x-1}\right):\left(\frac{x^2-7}{\left(x-1\right)\left(x-3\right)}+\frac{1}{x-1}-\frac{1}{x-3}\right)\)

\(=\left(\frac{x-1+1}{x-1}\right):\left(\frac{x^2-7+x-3-\left(x-1\right)}{\left(x-1\right)\left(x-3\right)}\right)\)

\(=\frac{x}{x-1}:\frac{x^2-7+x-3-x+1}{\left(x-1\right)\left(x-3\right)}\)

\(=\frac{x}{x-1}.\frac{\left(x-1\right)\left(x-3\right)}{x^2-9}\)

\(=\frac{x}{x-1}.\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{x}{x+3}\)

4 tháng 5 2019

b, \(|x+2|=5\)

\(\Rightarrow x+2=\hept{\begin{cases}5\Leftrightarrow x+2\ge0\Rightarrow x\ge-2\\-5\Leftrightarrow x+2< 0\Rightarrow x< -2\end{cases}}\)

Nếu \(x\ge-2\Rightarrow x+2=5\)

\(\Rightarrow x=3\)\(\left(ktmđkxđ\right)\)

Nếu \(x< -2\Rightarrow x+2=-5\)

\(\Rightarrow x=-7\)\(\left(tm\right)\)

Vậy \(x=-7\)