Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= ( 2x-1) - (2x+3)(x-2) - 2(x+2)(x+5)
= (2x-1) - (2x^2 - 4x+3x-6) - (2x-4)(x+5)
= (2x-1) - (2x^2-4x+3x-6) - (2x^2+10x-4x-20)
= 2x-1-2x^2+4x-3x+6-2x^2-10x+4x+20
= -3x-4x^2+25
= -4x^2-3x+25
Với x=-3 ta có:
(-4).(-3)^2-3.(-3)+25
=-36+9+25
=-2
\(A=\left(2x-1\right)^2-\left(2x+3\right).\left(x-2\right)-2.\left(x+2\right).\left(x+5\right)\)
\(=\left(2x-1\right)^2-\left(2x+3\right).\left(x-2\right)-2.\left(x+2\right).\left(x+5\right)\)
\(=4x^2-4x+1-2x^2-3x+4x+6-2x^2-4x-10x-20\)
\(=4x^2-2x^2-2x^2-4x-3x+4x-4x-10x+1+6-20\)
\(=0-17x-13\)
\(=-17x-13\)
Ta thay \(x=-3\) vào
\(A=-17.\left(-3\right)-13=38\)
a) M = (x² + 3xy - 3x³) + (2y³ - xy + 3x³)
= x² + 3xy - 3x³ + 2y³ - xy + 3x³
= x² + (3xy - xy) + (-3x³ + 3x³) + 2y³
= x² + 2xy + 2y³
Tại x = 5 và y = 4
M = 5² + 2.5.4 + 2.4³
= 25 + 40 + 2.64
= 65 + 128
= 193
b) N = x²(x + y) - y(x² - y²)
= x³ + x²y - x²y + y³
= x³ + (x²y - x²y) + y³
= x³ + y³
Tại x = -6 và y = 8
N = (-6)³ + 8³
= -216 + 512
= 296
c) P = x² + 1/2 x + 1/16
= (x + 1/2)²
Tại x = 3/4 ta có:
P = (3/4 + 1/2)² = (5/4)² = 25/16
\(A=\left(2x-1\right)^2-\left(2x+3\right)\left(x-2\right)-2\left(x+2\right)\left(x+5\right)\)
\(=4x^2-4x+1-\left(2x^2-x-6\right)-2\left(x^2+7x+10\right)\)
\(=-17x-13\)
Thay x=-3 vào A,ta được
\(A=\left(-17\right)\cdot\left(-3\right)-13\)
\(=38\)
Vậy A=38 tại x=-3
A = ( 2x - 1 )2 - ( 2x + 3 )( x- 2) - 2( x + 2 )( x + 5 )
= 4x2 - 4x + 1 - 2x2 - 4x + 3x - 6 - 2x - 4 + x + 5
= 2x2 - 6x - 4
Thay x = -3 vào biểu thức ta được:
2 . ( -3 )2 - 6 . ( -3 ) - 4
= 2 . 9 - 6 . ( -3 ) -4
= 18 + 18 - 4
= 32
Hk tốt
Bài 2:
a) Ta có: \(A=\left(7x+5\right)^2+\left(3x-5\right)^2-\left(10-6x\right)\left(5+7x\right)\)
\(=\left(7x+5\right)^2+2\cdot\left(7x+5\right)\cdot\left(3x-5\right)+\left(3x-5\right)^2\)
\(=\left(7x+5+3x-5\right)^2\)
\(=\left(10x\right)^2=100x^2\)
Thay x=-2 vào A, ta được:
\(A=100\cdot\left(-2\right)^2=100\cdot4=400\)
b) Ta có: \(B=\left(2x+y\right)\left(y^2-2xy+4x^2\right)-8x\left(x-1\right)\left(x+1\right)\)
\(=8x^3+y^3-8x\left(x^2-1\right)\)
\(=8x^3+y^3-8x^3+8x\)
\(=8x+y^3\)
Thay x=-2 và y=3 vào B, ta được:
\(B=-2\cdot8+3^3=-16+27=11\)
Tìm GTNN của : \(x^2-4x+3\)
\(x^2-4x+3=x^2-4x+4-1=\left(x-2\right)^2-1\)
Vì \(\left(x-2\right)^2\ge0\) nên \(\left(x-2\right)^2-1\ge-1\)
Vậy GTNN của biểu thức là -1 . Dấu bằng xảy ra khi x = 2
2) \(\left(2x-1\right)\left(x+5\right)-3.\left(x-2\right)^2+\left(x+4\right)\left(x-4\right)\)
\(=2x^2+10x-x-5-3.\left(x^2-4x+4\right)+x^2-16\)
\(=2x^2+9x-5-3x^2+12x-12+x^2-16=21x-33\)
Khi x = -2 thì A = 21 . (-2) -33 = -75
Bài 1: (x-7)(x-8)-(x-5)(x-2)
=x^2 - 15x +56 -( x^2 -7x +10)
=46-8x.Thay x=-1/5 vào bt ta có:
A=46-8*(-1)/5=47,6
Bài 2:(x - 3)^2 - 2(x - 3)(x + 2)+ (x+2)^2
=(x - 3)[x - 3 - 2(x+2)] +(x+2)^2
=(x-3)[-x-7] + x^2+4x+4
=-x^2 -4x +21 +x^2+4x+4
=25
Bài 3:
a)2x^2 - 6x=0
<=>2x(x-3)=0
<=>2x=0 hoặc x-3=0
<=>x=0 hoặc x=3
b)x^2-6x+9=0 <-- chắc đề thế này
<=>(x-3)^2=0 dùng HĐT
<=>x-3=0 =>x=3
\(A=\left(x+3\right)\left(x-2\right)-\left(x-5\right)\left(x+5\right)\)
\(=x\left(x-2\right)+3\left(x-2\right)+25-x^2\)
\(=x^2+x-6+25-x^2\)
\(=x+19\)
Tại \(x=2\)\(\Rightarrow A=2+19=21\)