Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\sqrt{\left(-5\right)^6}+3\sqrt{\left(-2\right)^8}.\)
\(=2\sqrt{\left(\left(-5\right)^3\right)^2}+3\sqrt{\left(\left(-2\right)^4\right)^2}\)
\(=2\cdot\left(-5\right)^3+3\cdot\left(-2\right)^4\)
\(=2\cdot125+3\cdot16=250+48=298\)
\(\Rightarrow2\sqrt{\left(-5\right)^6}+3\sqrt{\left(-2\right)^8}=298\)
\(2\sqrt{\left(-5\right)^6}+3\sqrt{\left(-2\right)^8}\)
\(=2\times125+3\times16\)
\(=250+48\)
\(=298\)
Rút gọn:
\(A=\sqrt{\frac{1}{x^2-4x+4}}+\frac{-4}{x^2-2^2}\)
\(=\sqrt{\frac{1}{\left(x-2\right)^2}}-\frac{4}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{1}{x-2}-\frac{4}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{4}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x+2-4}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{\left(x-2\right)\left(x+2\right)}=\frac{1}{x+2}\)
Thay x=3 vào A ta được \(\frac{1}{3+2}=\frac{1}{5}\)
a, \(5\sqrt{\left(-2\right)^4}=5\sqrt{2^4}=5.2^2=5.4=20\)
b, \(-4\sqrt{\left(-3\right)^6}=-4\sqrt{3^6}=-4.3^3=-4.27=-108\)
c,\(\sqrt{\sqrt{\left(-5\right)^8}}=\sqrt{\sqrt{5^8}}=\sqrt{5^4}=5^2=25\)
d ,\(2\sqrt{\left(-5\right)^6}+3\sqrt{\left(-2\right)^8}\)
\(=2\sqrt{5^6}+3\sqrt{2^8}\)
=\(2.5^3+3.2^4=2.125+3.16=298\)
a) \(5\sqrt{\left(-2\right)^4}\) \(=5\left|\left(-2\right)^2\right|=5.4=20\)
b) \(-4\sqrt{\left(-3\right)^6}=-4\left|\left(-3\right)^3\right|=-4.27=-108\)
c) \(\sqrt{\sqrt{\left(-5\right)^8}}=\left|\left(-5\right)^4\right|=5^4=625\)
d) \(2\sqrt{\left(-5\right)^6}+3\sqrt{\left(-2\right)^8}\) \(=2\left|\left(-5\right)^3\right|+3\left|\left(-2\right)^4\right|\)
\(=-2.\left(-125\right)+3.16\)
\(= 250 + 48 = 298\)
(\(\sqrt{8-2\sqrt{15}}\)+ \(\sqrt{8+2\sqrt{15}}\)- \(2\sqrt{6-2\sqrt{5}}\))/2
= (\(\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)+ \(\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)- \(2\sqrt{\left(\sqrt{5}-1\right)^2}\))/2
= ( \(\sqrt{5}-\sqrt{3}+\sqrt{5}+\sqrt{3}\)\(-2\sqrt{5}+2\)) / 2
= 2/2 = 1
bài của TuanMinhAms sai nha
\(A=\sqrt{4-\sqrt{15}}+\sqrt{4+\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
\(\Rightarrow\)\(\sqrt{2}A=\sqrt{8-2\sqrt{15}}+\sqrt{8+2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-2\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}-\sqrt{3}+\sqrt{5}+\sqrt{3}-2\left(\sqrt{5}-1\right)=2\)
\(\Rightarrow\)\(A=\sqrt{2}\)
a) \(\sqrt{117,5^2-26,5^2-1440}=\sqrt{\left(117,5-26,5\right)\left(117,5+26,5\right)-1440}\)
\(=\sqrt{91.144-1440}=\sqrt{144\left(91-10\right)}=\sqrt{12^2.9^2}=12.9=108\)
b) \(\sqrt{146,5^2-109,5^2+27.256}=\sqrt{\left(146,5-109,5\right)\left(146,5+109,5\right)+27.256}\)
\(=\sqrt{37.256+27.256}=\sqrt{256\left(37+27\right)}=\sqrt{256.64}=\sqrt{16^2.8^2}=16.8=128\)
5 - 2 4 = 5 - 2 2 2 = 5 - 2 2 = 5 . 4 = 5 . 4 = 20