Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
\(2x^3+4x^2y+2xy^2\)
\(= 2 x ( x ² + 2 x y + y ² )\)
\(= 2 x ( x + y ) ² \)
\( − 3 x ^4 y − 6 x ^3 y ^2 − 3 x ^2 y ^3 \)
\(=-3x^2y(x^2+2xy+y^2)\)
\(=-3x^2y(x+y)^2\)
\(4x^5y^2+8x^4y^3+4x^3y^4\)
\(=4x^3y^2.x^2+4x^3y^2.2xy+4x^3y^2.y^2\)
\(=4x^3y^2.(x^2+2xy+y^2)\)
\(=4x^3y^2.(x+y)^2\)
1, \(\frac{4y^2}{11x^4}.\left(-\frac{3x^2}{8y}\right)\)\(=\frac{4y.y}{11x^2.x^2}.\frac{-3x^2}{2.4y}\)\(=\frac{y}{11x^2}.\frac{-3}{2}=\frac{-3y}{22x^2}\)
2, \(\frac{4x^2}{5y^2}:\frac{6x}{5y}:\frac{2x}{3y}\)\(=\frac{4x^2}{5y^2}.\frac{5y}{6x}.\frac{3y}{2x}\)\(=\frac{2x.2x}{5y.y}.\frac{5y}{3.2x}.\frac{3y}{2x}\)\(=\frac{2x}{y}.\frac{1}{3}.\frac{3y}{2x}\)
\(\frac{2x}{3y}.\frac{3y}{2x}=1\)
3, \(\frac{x^2-4}{3x+12}.\frac{x+4}{2x-4}\)\(=\frac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}.\frac{x+4}{2\left(x-2\right)}\)\(=\frac{\left(x+2\right)}{3}.\frac{1}{2}=\frac{x+2}{6}\)
4, \(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}\)\(=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\left(-\frac{2\left(x-2\right)}{x+2}\right)=\frac{5}{4}.\frac{-2}{1}=-\frac{5}{2}\)
5, \(\frac{x^2-36}{2x+10}.\frac{3}{6-x}=\frac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}.\frac{3}{-\left(x-6\right)}=\frac{x+6}{2\left(x+5\right)}.\frac{-3}{1}=\frac{-3\left(x+6\right)}{2\left(x+5\right)}\)
6, \(\frac{x^2-9y^2}{x^2y^2}.\frac{3xy}{2x-6y}=\frac{\left(x-3y\right)\left(x+3y\right)}{\left(xy\right)^2}.\frac{3xy}{2\left(x-3y\right)}=\frac{x+3y}{xy}.\frac{3}{2}=\frac{3\left(x+3y\right)}{2xy}\)
7, \(\frac{3x^2-3y^2}{5xy}.\frac{15x^2y}{2y-2x}=\frac{3\left(x-y\right)\left(x+y\right)}{5xy}.\frac{5xy.3x}{-2\left(x-y\right)}=\frac{3\left(x+y\right)}{1}.\frac{3x}{-2}=\frac{-9x\left(x+y\right)}{2}\)
a) \(3x\left(x-4y\right)-\frac{12}{5}y\left(y-5x\right)=3x^2-12xy-\frac{12}{5}y^2+12xy=3x^2-\frac{12}{5}y^2\)
b) \(\left(4x^2-3y\right)\cdot2y-\left(3x^2-4y\right)\cdot3y\)
\(=8x^2y-6y^2-9x^2y+12y^2=-x^2y+6y^2\)
\(1,\frac{x^6+2x^3y^3+y^6}{x^7-xy^6}=\frac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}=\frac{\left(x^3+y^3\right)^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}=\frac{x^3+y^3}{x\left(x^3-y^3\right)}\)
\(2,=\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\frac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a+c-b\right)}=\frac{a+b-c}{a+c-b}\)
pt thành nhân tử là ra
4x^2/5y^2 * 5y/6x * 3y/2x= 1/3
(x-2)(x+2)/3(x+4) * x+4/2(x-2)=x+2/6
5(x+2)/4(x-2)* -2(x-2)/x+2=-5/2
a)\(ĐKXĐ:x\ne0;-1\)
Ta có:\(\frac{x^3+1}{x}.\left(\frac{1}{x+1}+\frac{x-1}{x^2-x+1}\right)=\frac{x^3+1}{x}.\frac{\left(x^2-x+1\right)+\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x^3+1}{x}.\frac{x^2-x+1+\left(x^2-1\right)}{x^3+1}=\frac{2x^2-x}{x}=\frac{2x\left(x-1\right)}{x}=2\left(x-1\right)\)
a, \(2x^2+3\left(x+1\right)\left(x-1\right)-5x\left(x+1\right)\)
\(=2x^2+3\left(x^2-1\right)-5x^2-5x\)
\(=2x^2+3x^2-3-5x^2-5x\)
\(=\left(2x^2+3x^2-5x^2\right)-3-5x\)
\(=-\left(5x+3\right)\)
b, \(\left(4x+3y\right)\left(2x-5y\right)-\left(2x+6y\right)\left(3x-5y\right)\)
\(=8x^2-20xy+6xy-\left(15y^2-6x^2-10xy-18xy-30y^2\right)\)
\(=8x^2-20xy+6xy-15y^2+6x^2+10xy+18xy+30y^2\)
\(=\left(8x^2+6x^2\right)+\left(-20xy+6xy+10xy+18xy\right)+\left(-15y^2+30y^2\right)\)
\(=14x^2+14xy+15y^2\)
\(=14x.\left(x+y\right)+15y^2\)
Chúc bạn học tốt!!!
a) \(\frac{4x^2}{5y^2}.\frac{5y}{6x}.\frac{3y}{2x}=\frac{4x^2.5y.3y}{5y^2.6x.2x}=1\)
b)\(\frac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}.\frac{x+4}{2\left(x-2\right)}=\frac{x+2}{6}\)
c) \(\frac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}.\frac{-3}{x-6}=\frac{-3\left(x+6\right)}{2\left(x+5\right)}\)
Lời giải:
\(P=\frac{2xy^2(4x^4y^4+x^2)}{2xy^2}-\frac{3x^3y^2(2x-1)}{3x^3y^2}=4x^4y^4+x^2-(2x-1)\)
\(=4x^4y^4+(x^2-2x+1)=(2x^2y^2)^2+(x-1)^2\)
Do $(2x^2y^2)^2\geq 0; (x-1)^2\geq 0$ với mọi $x,y\in\mathbb{R}$
Do đó $P\geq 0$
Vậy GTNN của $P$ là $0$. Dấu "=" xảy ra khi $2x^2y^2=0$ và $x-1=0$ hay $y=0; x=1$